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This presentation informally presents some of the main
notions and results of our upcoming preprint Opetopic spaces
as models for∞-categories and planar∞-operads (on arXiv
soonTM).
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Opetopes

Motivations

Opetopic algebras

Opetopic algebras: monadic approach

The algebraic trompe-l’œil
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Opetopes



In a nutshell...

Opetopes are shapes (akin to globules, cubes, simplices,
dendrices, etc.) designed to represent the notion of
composition in every dimension. As such, they were
introduced in [Baez and Dolan, 1998] to describe laws and
coherence in weak higher categories.

They have been actively studied over the recent years in
[Hermida et al., 2002], [Cheng, 2003], [Leinster, 2004],
[Kock et al., 2010].
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Informal definition

They are pasting diagrams where every cell is many-to-one i.e.
many inputs, one output. Here is an example of a 3-opetope:

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓

Every cell denoted by a ⇓ above has dimension 2, so that a
3-opetope really is a pasting diagram of cells of dimension 2.

We further ask those cells of dimension 2 to be 2-opetopes,
i.e. pasting diagram of cells of dimension 1 (the simple arrows
→).

. .⇓
. .

.

⇓ .

. .

.
⇓
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Informal definition

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓

Definition
An n-dimensional opetope (or just n-opetope) is a pasting
diagram of (n− 1)-opetopes,

i.e. a finite set of (n− 1)-opetopes
glued along (n − 2)-opetopes, in a “well-defined manner”. We
write On the set of n-opetopes.
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Definition: low dimensions

• There is a unique 0-dimensional opetope, which we’ll call
the point and denote by ⧫:

.

• There is a unique 1-opetope, the arrow, denoted by ◾:

. .

• 2-opetopes are pasting diagram of 1-opetopes:
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Definition: dimension 3

• 3-opetopes are pasting diagrams of 2-opetopes

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓
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Definition: dimension 4

• The induction goes on: 4-opetopes are pasting diagrams
of 3-opetopes:

. .

.

⇓

⇓ ⇛
. .

.

⇓

.

.

.

.

.

.
⇓

⇓ ⇓

⇓
⇛

.

.

.
.

.

.

⇓

.

.

.

.

.

⇓

.
⇓

⇓ ⇓

⇓
⇛

.

.

.
.

.

.

⇓
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Motivations



Motivations: operads

Let P be a planar operad. An operation f ∈ P(3) is classically
represented as a corolla (left), but can also be depicted as
2-opetope (right):

3
◾

◾ ◾ ◾

.

. .

.
⇓
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Motivations: operads

Composing operations of P amounts to assemble a “tree of
operations” (left), which corresponds to forming a pasting
diagram (right):

3

12

◾

◾◾◾

◾◾ ◾

.

. .

.

.

⇓ ⇓

⇓

Recall that a pasting diagram of 2-opetopes is a 3-opetope!
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Motivations: operads

The associated 3-opetope then corresponds to the compositor
of this pasting diagram:

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓
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Motivations: categories

Categories can also be represented “opetopically”: a
morphism in a category C has the shape of the arrow, which is
the unique 1-dimensional opetope:

. .

Composing morphisms then amounts to forming a pasting
diagram of arrows

.

. .

.
and the compositor is the corresponding 2-opetope

.

. .

.
⇓
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Opetopic algebras



The category of opetopes

Let O be the category whose objects are opetopes

and
morphisms are source and target embeddings, e.g.

. .⇓
sÐ→

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓

.

. .

.
⇓

tÐ→
.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

Let Om,n be the full subcategory of O spanned by opetopes of
dimension between m and n.
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Opetopic sets

Let Psh(O) = [Oop,Set] be the category of opetopic sets.

Likewise, Psh(Om,n) = [Oop
m,n,Set] is the cagetogy of presheaves

over Om,n, or “truncated opetopic sets”.

Example

1. We have

O0,1 = (⧫⇉ ◾) since ◾ = . .

and thus, Psh(O0,1) = Graph, the category of directed
graphs.

2. Likewise, Psh(O1,2) is the category of (non-symmetric)
collections.
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Opetopic sets

Some opetopic sets are of particular interest:

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓

• For ω ∈ O, let O[ω] = O(−, ω) be the representable at ω.

• Let ∂O[ω] = O[ω] − {ω} be the boundary of ω.
• Let Λt[ω] = ∂O[ω] − {tω} be the target horn of ω
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Target horns

Let ω ∈ O, and X ∈ Psh(O).

A morphism

f ∶ Λt[ω]Ð→ X

amounts to forming a pasting diagram of shape ω with
elements of X.

Example

If ω = 3 =
.

. .

.
⇓ , then Λt[3] =

.

. .

.
. Thus, a

morphism Λt[3]Ð→ X amounts to the choice of 3 composable
arrows of X.
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Lifting against horn inclusions

Lifting f ∶ Λt[ω]Ð→ X through O[ω] requires to find a
compositor for the pasting diagram of f

Λt[ω] X

O[ω]

f

hω
f̄

In our previous example,

hω ∶
.

. .

.
↪

.

. .

.
⇓
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Lifting against horn inclusions

Let Hn = {hω ∶ Λt[ω]↪ O[ω] ∣ ω ∈ On}.

An opetopic set X ∈ Psh(O) such that Hn+1 ⊥ X, i.e.

Λt[ω] X

O[ω]

∀

hω ∃!

has all compositors of n-dimensional pasting diagrams: every
pasting diagram of dimension n has a composite.
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Lifting against horn inclusions

Example
Recall that Psh(O0,1) = Graph. Let X ∈ Psh(O0,1).

Pasting
diagram of dimension 1 look like this:

.

. .

.

If H2 ⊥ X, then we have a composition map

µ ∶ paths of XÐ→ arrows of X

which looks like a category! But is µ associative? (no)

19
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Lifting against horn inclusions

Unfortunately, lifting against Hn+1 does not give an adequate
notion of algebra as the composition operation is not
associative.

Solution: lift against Hn+1,n+2 = Hn+1 ∪Hn+2.

Intuitively, if Hn+2 ⊥ X, then a combination of lifting problems
(in dimension n) can be summarized into a unique one:

.

. .

.

.

⇓ ⇓

⇓
↪

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓
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Lifting against horn inclusion

Example
Let X ∈ Psh(O) be an opetopic set such that H2,3 ⊥ X, and
consider

ω =
⎛
⎜⎜
⎝ .

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

⎞
⎟⎟
⎠
∈ O3

Then hω ⊥ X ensures that for f,g,h composable arrows in X we
have

(fg)h = fgh.

A similar opetope would enforce f(gh) = fgh.

21
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Opetopic algebras (almost)

So to summarize:

• Hn+1 ⊥ X gives a composition operation for n-dimensional
cells of X;

• Hn+2 ⊥ X ensures that it is suitably associative.

The last step required to define opetopic algebra is to trivialize
X in dimension < n and > n + 2.

22
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Trivialization

• We want X to be “trivial” in dimension < n.

Solution: require O<n ⊥ X, where

O<n = {∅↪ O[ψ] ∣ dimψ < n} .

• We want X to be “trivial” in dimension > n + 2.
Solution: require B>n+2 ⊥ X, where

B>n+2 = {∂O[ψ]↪ O[ψ] ∣ dimψ > n + 2}

Lemma

Hn+1,n+2 ∪ B>n+2 ⊥ X ⇐⇒ H≥n+1 ⊥ X
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Opetopic algebras

Definition
A (0,n)-opetopic algebra is an opetopic set X such that

O<n ∪H≥n+1 ⊥ X.

Examples

• Monoids are exactly (0, 1)-opetopic algebras.
• Planar uncolored operads are exactly (0, 2)-opetopic
algebras.

• Loday’s combinads (over the combinatorial pattern PT of
planar trees) are exactly (0, 3)-opetopic algebras.
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Opetopic algebras

What if we want some colors in our algebras?

Solution: Don’t trivialize low dimensions as much:
Definition
A k-colored n-opetopic algebra (or simply (k,n)-opetopic
algebra) is an opetopic set X such that

O<n−k ∪H≥n+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ak,n

⊥ X.

Examples

• Categories (colored monoids) are exactly
(1, 1)-opetopic algebras.

• Planar colored operads are exactly (1, 2)-opetopic
algebras.
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Opetopic algebras: monadic
approach



Intuition: back to pasting diagrams

Recall that if X is a (k,n)-algebra, then there is a composition
operation

µ ∶ {n-dim. pasting diags. of X}Ð→ X

We now describe the “free (k,n)-algebra”-monad, which
constructs all those pasting diagrams.
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The Zn monad

Discarding irrelevant dimensions, we want a monad
Zn ∶ Psh(On−k,n)Ð→ Psh(On−k,n) that “constructs pasting
diagrams”.

• Since Zn does not act on colors, we have ZnYϕ = Yϕ for
ϕ ∈ On−k,n−1.

• Let ω ∈ On+1 be

.

. .

.

.

⇓ ⇓
⇓

⇛

.

. .

.

.

⇓ A pasting

diagram as on the left (Λt[ω]) needs to be evaluated
to a cell as on the right (tω). Thus for ψ ∈ On,

ZnYψ = ∑
ω∈On+1
tω=ψ

Psh(On−k,n) (Λt[ω],Y) .
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The Zn monad

Theorem
The endofunctor Zn is canonically a parametric right adjoint
monad.

Proof (sketch)

• Unit YÐ→ ZnY: a single cell of Y is already a pasting
diagram.

• Multiplication ZnZnYÐ→ ZnY: a pasting diagram of pasting
diagrams is a pasting diagram.

We write Algk(Zn) the Eilenberg–Moore category of
Zn ∶ Psh(On−k,n)Ð→ Psh(On−k,n).
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Opetopic algebras: monadic definition

Recall that (k,n)-opetopic algebras are opetopic sets
X ∈ Psh(O) such that Ak,n ⊥ X.

Theorem
There is an adjunction

hk,n ∶ Psh(O)Ð→←Ð Algk(Zn) ∶ Nk,n

that exhibits Algk(Zn) as the localization A−1k,nPsh(O). In other
words, (k,n)-algebras and Zn algebras are the same!
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Opetopic algebras: monadic definition

Examples

• If (k,n) = (0, 1), then Psh(On−k,n) = Set, and Z1 ∶ SetÐ→ Set
is the free monoid monad.

• If (k,n) = (1, 1), then Psh(On−k,n) = Graph, and
Z1 ∶ GraphÐ→ Graph is the free category monad.

• If (k,n) = (0, 2), then Psh(On−k,n) = SetN, and
Z2 ∶ SetN Ð→ SetN is the free uncolored planar operad
monad.

• If (k,n) = (1, 2), then Psh(On−k,n) = Coll is the category of
(non symmetric) collections, and Z2 ∶ CollÐ→ Coll is the
free colored planar operad monad.

So we have an infinite hierarchy of “higher arity algebras”! (no)
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The algebraic trompe-l’œil



Too many colors

Recall that a n-dimensional pasting diagram in X is a set of
n-cells of X glued along (n − 1)-cells

.

. .

.

.

⇓ ⇓

⇓

So cells in dimension < n − 1 do not play a role in the algebraic
structure of a (k,n)-algebra.

Theorem
The following is a pullback

Algk(Zn) Alg1(Zn)

Psh(On−k,n) Psh(On−1,n).
U U
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Too many dimensions

Recall that an n-opetope is a tree decorated in
(n − 1)-opetopes.

In particular, 3-opetopes are just plain trees,
and we have functor

(−)† ∶ On−1,n Ð→ O2,3

This gives rise to a functor

(−)† ∶ Psh(On−1,n)Ð→ Psh(O2,3)

by left Kan extension.

Theorem
The following is a pullback

Alg1(Zn) Alg1(Z3)

Psh(On−1,n) Psh(O2,3).
U U

(−)†
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Too many everything

Pasting the two pullbacks

Algk(Zn) Alg1(Zn)

Psh(On−k,n) Psh(On−1,n),

⌟
U U

Alg1(Zn) Alg1(Z3)

Psh(On−1,n) Psh(O2,3).

⌟
U U

(−)†

we obtain

Theorem (Algebraic trompe-l’œil)
The following is a pullback

Algk(Zn) Alg1(Z3)

Psh(On−k,n) Psh(O2,3).
U U
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Thank you for your attention!

Stay tuned for part 2 with Chaitanya!

33



References i

Baez, J. C. and Dolan, J. (1998).
Higher-dimensional algebra. III. n-categories and the
algebra of opetopes.
Advances in Mathematics, 135(2):145–206.
Cheng, E. (2003).
The category of opetopes and the category of opetopic
sets.
Theory and Applications of Categories, 11:No. 16, 353–374.

Hermida, C., Makkai, M., and Power, J. (2002).
On weak higher-dimensional categories. I. 3.
Journal of Pure and Applied Algebra, 166(1-2):83–104.

34



References ii

Ho Thanh, C. (2018).
The equivalence between opetopic sets and many-to-one
polygraphs.
arXiv e-prints.
arXiv:1806.08645 [math.CT].
Kock, J., Joyal, A., Batanin, M., and Mascari, J.-F. (2010).
Polynomial functors and opetopes.
Advances in Mathematics, 224(6):2690–2737.
Leinster, T. (2004).
Higher Operads, Higher Categories.
Cambridge University Press.

35


	Opetopes
	Motivations
	Opetopic algebras
	Opetopic algebras: monadic approach
	The algebraic trompe-l'œil

