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This presentation informally presents the main notions and
results of [CHM18] (in preparation, draft available at
chothanh.wordpress.com).
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Opetopes



In a nutshell...

Opetopes are shapes (akin to globules, cubes, simplices, etc.)
designed to represent the notion of composition in every
dimension. As such, they were introduced in [BD98] to
describe laws and coherence if weak higher categories.
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In a nutshell...

They are pasting diagrams where every cell is many-to-one.
Here is an example of a 3-opetope:

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓

Every cell above has dimension 2, so that a 3-opetope really is
a pasting diagram of cells of dimension 2.

We further ask those cells of dimension 2 to be 2-opetopes,
i.e. pasting diagram of cells of dimension 1 (the arrows).

We further ask those cells of dimension 1 to be 1-opetopes,
i.e. pasting diagram (in a trivial way) of cells of dimension 0
(the points).
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Informal definition

Definition
An n-opetope is a pasting diagram of (n − 1)-opetopes

i.e. a
finite set of (n − 1)-opetopes glued along (n − 2)-opetopes.
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Definition: low dimensions

• There is a unique 0-dimensional opetope, which we’ll call
the point

.

• There is a unique 1-opetope, the arrow:

. .

• 2-opetopes are pasting diagram of 1-opetopes, a.k.a. the
arrow ∎
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Definition: dimension 3

• 3-opetopes are pasting diagrams of 2-opetopes

.

. .

.

.

⇓ ⇓

⇓
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. .

.

.

⇓
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Definition: dimension 4

• The induction goes on: 4-opetopes are pasting diagrams
of 3-opetopes

. .

.

⇓

⇓ ⇛
. .

.

⇓

.

.

.

.

.

.
⇓

⇓ ⇓

⇓
⇛

.

.

.
.

.

.

⇓

.

.

.

.

.

⇓

.
⇓

⇓ ⇓

⇓
⇛

.

.

.
.

.

.

⇓
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Definition: dimension 4

• The induction goes on: 4-opetopes are pasting diagrams
of 3-opetopes

This is getting out of hand...

8



Motivation

Problem

1. The graphical approach is neither formal nor manageable
for dimensions ≥ 4.

2. A formal definition either use T-operads [Lei04] or
polynomial monads and trees [KJBM10], which are both
unintuitive and difficult to manipulate.

Solution
In this presentation, we give a rough sketch two ways to define
opetopes syntactically.
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The “named” approach



Idea

1. Take an opetope.

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

2. Give names to everything.
3. Write down the graftings:

A ∶ β(i← α)⊷ h(c← g(b← f))⊷ a⊷ ∅.

4. ???
5. Profit!
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Syntax

• We start with a set of variable V =∐n∈NVn, where
elements of Vn represent n-cells.

• The set of n-terms is defined as

Tn ::= Vn(Vn−1 ← Tn,⋯)
| Vn−1

Examples
For a,b, c ∈ V0, f,g,h ∈ V1,

a ∈ T0, h(a← g,b← f) ∈ T1,

f(a← f(a← f),a← f,a← f) ∈ T1, h ∈ T2.
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Syntax

• An n-type is a sequence of terms of the form

s1 ⊷ s2 ⊷ ⋯⊷ sn ⊷ sn+1 ⊷ ∅,

where si ∈ Tn+1−i.

• A n-typing is an expression of the form

t ∶ T

where t ∈ Tn and T is an (n − 1)-type.
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Main result of the named approach

Theorem
Derivable typings in system Opt! of the form

α ∶ T

where α ∈ Vn (as opposed to just Tn) are in bijective
correspondence (up to renaming of variables) with n-opetopes.

13



System Opt!: the point rule

The first rule of Opt! states that we may create points without
any prior assumption:

point.

pointx ∶ ∅
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System Opt!: the degen-fill rule

This rule takes an opetope and produces a degenerate
opetope from it:

.
degen-fill.

⇓

x ∶ T degen-fill
δ ∶ x⊷ x⊷ T
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System Opt!: the fill rule

This rule takes a pasting diagram (that is, a term), and creates
an opetope by “filling” it:

. . . . .
f g h i

fill

.

. . .

.

f

g h

i⇓ µ

t ∶ T fill
µ ∶ t⊷ T
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System Opt!: the graft rule

This rules glues an opetope to a pasting diagram of the same
dimension:

.

.

.
⇓

.

. .

.
⇓

graft-a
.

. .

.
⇓

.
⇓

t ∶ s⊷ T x ∶ y⊷ U graft-at(a← x) ∶ s[y/a]⊷ T
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Example 1

Let’s derive

a

b c

d

f

g

hi

j

⇓α
⇓β ⇛

a

b c

d

f

g

h

j

⇓γ
A
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f

g

hi

j

⇓α
⇓β ⇛

a

b c

d

f

g

h

j

⇓γ
A

Derivation of α

pointb ∶ ∅ fillg ∶ b⊷ ∅
pointa ∶ ∅ fillf ∶ a⊷ ∅ graft-bg(b← f) ∶ b[a/b]

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
≡a

⊷ ∅

fill
α ∶ g(b← f)⊷ a⊷ ∅

.
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Example 1
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f

g

hi

j

⇓α
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a

b c

d

f

g

h
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A

And we assemble to get A

⋮
β ∶ h(c← i)⊷ a⊷ ∅

⋮
α ∶ g(b← f)⊷ a⊷ ∅ graft-i

β(i← α) ∶ h(c← i)[g(b← f)/i]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡h(c←g(b←f))

⊷ a⊷ ∅

fillA ∶ β(i← α)⊷ h(c← g(b← f))⊷ a⊷ ∅
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Example 2

Let’s derive
. .
⇓
⇓ ⇛

. .

⇓
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Example 2

Let’s derive
. .
⇓
⇓ ⇛

. .

⇓

Top left part

pointa ∶ ∅ degen-fillα ∶ a⊷ a⊷ ∅
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Example 2

Let’s derive
. .
⇓
⇓ ⇛

. .

⇓

Bottom part

pointb ∶ ∅ fillg ∶ b⊷ ∅
pointa ∶ ∅ fillf ∶ a⊷ ∅ graft-bg(b← f) ∶ a⊷ ∅

fill
β ∶ g(b← f)⊷ a⊷ ∅
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Example 2

Let’s derive
. .
⇓
⇓ ⇛

. .

⇓

And we assemble

⋮
β ∶ g(b← f)⊷ a⊷ ∅

⋮
α ∶ a⊷ a⊷ ∅ graft-fa = b ⊢ β(f← α) ∶ g(b← f)[a/f]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡g

⊷ a⊷ ∅

filla = b ⊢ A ∶ β(f← α)⊷ g⊷ a⊷ ∅
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The “unnamed” approach



Idea

Since opetopes are pasting diagrams whose cells are
many-to-one, they can be represented as trees:

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓
⟿

3

12

∎

∎∎∎

∎∎ ∎

Then a cell in a pasting diagram no longer needs to have a
name, it can be identified by its address in that tree.

20



Idea

Since opetopes are pasting diagrams whose cells are
many-to-one, they can be represented as trees:

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓
⟿

3

12

∎

∎∎∎

∎∎ ∎

Then a cell in a pasting diagram no longer needs to have a
name, it can be identified by its address in that tree.

20



Idea: dimension 0 and 1

Denote by ⧫ the unique 0-opetope, a.k.a. the point:

.

and by ∎ the unique 1-opetope, a.k.a. the arrow:

. .

We can represent ∎ as a node of a tree as follows:

Let us add address information.

21
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.

and by ∎ the unique 1-opetope, a.k.a. the arrow:

. .

We can represent ∎ as a node of a tree as follows:

∎

⧫

⧫ ∗

[ϵ]

Let us add address information.
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Idea: dimension 2

Then we can:

1. create a tree with that node representing ∎

∎

∎

∎

⧫

⧫

⧫

⧫

∗

∗

∗

[ϵ]

[∗]

[∗∗]

2. consider that tree like a node, where the input edges are
the nodes of said tree

3. be convinced that this is a good representation of some
2-opetope!
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Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:

∎

∎

⧫

⧫

⧫

∗

∗

[ϵ]

[∗]
⟿ 2

∎

∎ ∎

[ϵ]
[∗
]

[ϵ] ⟿
. .

.

⇓
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∎

∎

∎

⋮

⧫

⧫

⧫

⧫

⧫

∗

∗

[ϵ]

[∗]

[∗∗⋯∗]
∗

∗

[ϵ]

⟿ n
∎

∎ ∎ ∎

⋯[ϵ]
[∗]

[∗∗
⋯∗]

[ϵ] ⟿

.

. . .

.
(1)

(2)

(n)⇓
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Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:

∎

⧫

⧫ ∗

[ϵ] ⟿ 1
∎

∎ [ϵ]

[ϵ] ⟿
. .⇓
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Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:

⧫ ⟿
0
∎

[ϵ]
⟿

.

⇓
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Idea: dimension 3

From there, repeat the process!

2

2

∎

∎∎

∎ ∎

[ϵ]

[[∗]]

[∗
]

[ϵ]

[ϵ]

[∗
]

⟿
A
3

2 2
[ϵ]

[ϵ]

[[∗
]]

⟿

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

24



Idea: dimension 3

From there, repeat the process!

1

0

∎

∎

[ϵ]

[[ϵ]]
[ϵ]

⟿
B
0

1 0
[ϵ]

[ϵ]

[[ϵ
]]

⟿
.
⇓

⇓
⇛

.

⇓
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Idea: dimension 3

From there, repeat the process!

2

0

∎

∎∎

[ϵ]

[[∗]]

[∗
]

[ϵ]

⟿
C
0

2 0
[ϵ]

[ϵ]

[[∗
]]

⟿
. .
⇓
⇓ ⇛

. .

⇓
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Idea: dimension 3

From there, repeat the process!

3

12

∎

∎∎∎

∎∎ ∎

[ϵ]

[[∗∗]][[∗]]

[∗∗
]

[∗]

[ϵ]

[ϵ]

[ϵ]

[∗
]

⟿
D
4

3 2 1
[ϵ]

[[∗]]

[[∗
∗]]

[ϵ]

⟿

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓
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Syntax

We now want a syntactical description of such trees.

Solution

In an n-opetope, every node is decorated by (n − 1)-opetope,
but (n − 1)-opetope does not uniquely identify a node. But
addresses do! So we just need to describe a partial map

AÐ→ On−1.
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addresses do! So we just need to describe a partial map

AÐ→ On−1.
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Syntax

We now want a syntactical description of such trees.

Solution

2

2

∎

∎∎

∎ ∎

[ϵ]

[[∗]]

[∗
]

[ϵ]

[ϵ]

[∗
]

⟿

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

In an n-opetope, every node is decorated by (n − 1)-opetope,
but (n − 1)-opetope does not uniquely identify a node. But
addresses do! So we just need to describe a partial map

AÐ→ On−1. 25



Syntax

We encode opetopes recursively as follows:

2

2

∎

∎∎

∎ ∎

[ϵ]

[[∗]]

[∗
]

[ϵ]

[ϵ]

[∗
]

⟿
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← 2
[[ϵ]]← 2

26



Syntax

We encode opetopes recursively as follows:

2

2

∎

∎∎

∎ ∎

[ϵ]

[[∗]]

[∗
]

[ϵ]

[ϵ]

[∗
]

⟿
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← 2
[[ϵ]]← 2

Reminder

2 =
∎

∎

⧫

⧫

⧫

∗

∗

[ϵ]

[∗]

26



Syntax

We encode opetopes recursively as follows:

2

2

∎

∎∎

∎ ∎

[ϵ]

[[∗]]

[∗
]

[ϵ]

[ϵ]

[∗
]

⟿
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← 2
[[ϵ]]← 2

Reminder

2 =
∎

∎

⧫

⧫

⧫

∗

∗

[ϵ]

[∗]
=
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

26



Syntax

We encode opetopes recursively as follows:

2

2

∎

∎∎

∎ ∎

[ϵ]

[[∗]]

[∗
]

[ϵ]

[ϵ]

[∗
]

⟿

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ϵ]←
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

[[ϵ]]←
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

Reminder

2 =
∎

∎

⧫

⧫

⧫

∗

∗

[ϵ]

[∗]
=
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

26



Syntax

We encode opetopes recursively as follows:

2

2

∎

∎∎

∎ ∎

[ϵ]

[[∗]]

[∗
]

[ϵ]

[ϵ]

[∗
]

⟿

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ϵ]←
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

[[ϵ]]←
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

Convention
∎ = {∗← ⧫
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Syntax

We encode opetopes recursively as follows:

2

2

∎

∎∎

∎ ∎

[ϵ]

[[∗]]

[∗
]

[ϵ]

[ϵ]

[∗
]

⟿

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ϵ]←
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← {∗← ⧫
[∗]← {∗← ⧫

[[ϵ]]←
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← {∗← ⧫
[∗]← {∗← ⧫

Convention
∎ = {∗← ⧫

26



Syntax: examples

1

0

∎

∎

[ϵ]

[[ϵ]]
[ϵ]

⟿
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← 1
[[ϵ]]← 0

27



Syntax: examples

1

0

∎

∎

[ϵ]

[[ϵ]]
[ϵ]

⟿
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← 1
[[ϵ]]← 0

27



Syntax: examples

1

0

∎

∎

[ϵ]

[[ϵ]]
[ϵ]

⟿
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← 1
[[ϵ]]← 0

Reminder

1 = ∎

⧫

⧫ ∗

[ϵ] = {[ϵ]← ∎

27



Syntax: examples

1

0

∎

∎

[ϵ]

[[ϵ]]
[ϵ]

⟿
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← {[ϵ]← ∎

[[ϵ]]← 0

Reminder

1 = ∎

⧫

⧫ ∗

[ϵ] = {[ϵ]← ∎

27



Syntax: examples

1

0

∎

∎

[ϵ]

[[ϵ]]
[ϵ]

⟿
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← {[ϵ]← ∎

[[ϵ]]← 0

Reminder
∎ = {∗← ⧫

27



Syntax: examples

1

0

∎

∎

[ϵ]

[[ϵ]]
[ϵ]

⟿
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← {[ϵ]← {∗← ⧫
[[ϵ]]← 0

Reminder
∎ = {∗← ⧫

27



Syntax: examples

1

0

∎

∎

[ϵ]

[[ϵ]]
[ϵ]

⟿
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← {[ϵ]← {∗← ⧫
[[ϵ]]← 0

Reminder + convention
0 = ⧫ = {{⧫
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Syntax: examples

1

0

∎

∎

[ϵ]

[[ϵ]]
[ϵ]

⟿
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← {[ϵ]← {∗← ⧫
[[ϵ]]← {{⧫

Reminder + convention
0 = ⧫ = {{⧫

27



Syntax: examples

2

0

∎

∎∎

[ϵ]

[[∗]]

[∗
]

[ϵ]

⟿
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← 2
[[ϵ]]← 0

28



Syntax: examples

2

0

∎

∎∎

[ϵ]

[[∗]]

[∗
]

[ϵ]

⟿
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← 2
[[ϵ]]← 0

28



Syntax: examples

2

0

∎

∎∎

[ϵ]

[[∗]]

[∗
]

[ϵ]

⟿
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← 2
[[ϵ]]← 0

Reminder

2 =
∎

∎

⧫

⧫

⧫

∗

∗

[ϵ]

[∗]
=
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

28



Syntax: examples

2

0

∎

∎∎

[ϵ]

[[∗]]

[∗
]

[ϵ]

⟿

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[ϵ]←
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

[[ϵ]]← 0

Reminder

2 =
∎

∎

⧫

⧫

⧫

∗

∗

[ϵ]

[∗]
=
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

28



Syntax: examples

2

0

∎

∎∎

[ϵ]

[[∗]]

[∗
]

[ϵ]

⟿

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[ϵ]←
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

[[ϵ]]← 0

Reminder
∎ = {∗← ⧫

28



Syntax: examples

2

0

∎

∎∎

[ϵ]

[[∗]]

[∗
]

[ϵ]

⟿

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[ϵ]←
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← {∗← ⧫
[∗]← {∗← ⧫

[[ϵ]]← 0

Reminder
∎ = {∗← ⧫

28



Syntax: examples

2

0

∎

∎∎

[ϵ]

[[∗]]

[∗
]

[ϵ]

⟿

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[ϵ]←
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← {∗← ⧫
[∗]← {∗← ⧫

[[ϵ]]← 0

Reminder
0 = ⧫ = {{⧫

28



Syntax: examples

2

0

∎

∎∎

[ϵ]

[[∗]]

[∗
]

[ϵ]

⟿

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[ϵ]←
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← {∗← ⧫
[∗]← {∗← ⧫

[[ϵ]]← {{⧫

Reminder
0 = ⧫ = {{⧫

28



Syntax: examples

3

12

∎

∎∎∎

∎∎ ∎

[ϵ]

[[∗∗]][[∗]]

[∗∗
]

[∗]

[ϵ]

[ϵ]

[ϵ]

[∗
]

⟿

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[ϵ]← 3
[[ϵ]]← 1
[[∗]]← 2
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Syntax: examples

3

12

∎

∎∎∎

∎∎ ∎

[ϵ]

[[∗∗]][[∗]]

[∗∗
]

[∗]

[ϵ]

[ϵ]

[ϵ]

[∗
]

⟿

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[ϵ]← 3
[[ϵ]]← 1
[[∗]]← 2

29



Syntax: examples

3

12

∎

∎∎∎

∎∎ ∎

[ϵ]

[[∗∗]][[∗]]

[∗∗
]

[∗]

[ϵ]

[ϵ]

[ϵ]

[∗
]

⟿

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[ϵ]← 3
[[ϵ]]← 1
[[∗]]← 2

Reminder

3 =

∎

∎

∎

⧫

⧫

⧫

⧫

∗

∗

∗

[ϵ]

[∗]

[∗∗]

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

[∗∗]← ∎
29



Syntax: examples

3

12

∎

∎∎∎

∎∎ ∎

[ϵ]

[[∗∗]][[∗]]

[∗∗
]

[∗]

[ϵ]

[ϵ]

[ϵ]

[∗
]

⟿

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ϵ]←

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

[∗∗]← ∎

[[ϵ]]← 1
[[∗]]← 2

Reminder

3 =

∎

∎

∎

⧫

⧫

⧫

⧫

∗

∗

∗

[ϵ]

[∗]

[∗∗]

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

[∗∗]← ∎ 29



Syntax: examples

3

12

∎

∎∎∎

∎∎ ∎

[ϵ]

[[∗∗]][[∗]]

[∗∗
]

[∗]

[ϵ]

[ϵ]

[ϵ]

[∗
]

⟿

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ϵ]←

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

[∗∗]← ∎

[[ϵ]]← 1
[[∗]]← 2

Reminder

1 = ∎

⧫

⧫ ∗

[ϵ] = {[ϵ]← ∎

29



Syntax: examples

3

12

∎

∎∎∎

∎∎ ∎

[ϵ]

[[∗∗]][[∗]]

[∗∗
]

[∗]

[ϵ]

[ϵ]

[ϵ]

[∗
]

⟿

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ϵ]←

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

[∗∗]← ∎

[[ϵ]]← {[ϵ]← ∎

[[∗]]← 2

Reminder

1 = ∎

⧫

⧫ ∗

[ϵ] = {[ϵ]← ∎

29



Syntax: examples

3

12

∎

∎∎∎

∎∎ ∎

[ϵ]

[[∗∗]][[∗]]

[∗∗
]

[∗]

[ϵ]

[ϵ]

[ϵ]

[∗
]

⟿

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ϵ]←

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

[∗∗]← ∎

[[ϵ]]← {[ϵ]← ∎

[[∗]]← 2

Reminder

2 =
∎

∎

⧫

⧫

⧫

∗

∗

[ϵ]

[∗]
=
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

29



Syntax: examples

3

12

∎

∎∎∎

∎∎ ∎

[ϵ]

[[∗∗]][[∗]]

[∗∗
]

[∗]

[ϵ]

[ϵ]

[ϵ]

[∗
]

⟿

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ϵ]←

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

[∗∗]← ∎

[[ϵ]]← {[ϵ]← ∎

[[∗]]←
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

Reminder

2 =
∎

∎

⧫

⧫

⧫

∗

∗

[ϵ]

[∗]
=
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

29



Syntax: examples

3

12

∎

∎∎∎

∎∎ ∎

[ϵ]

[[∗∗]][[∗]]

[∗∗
]

[∗]

[ϵ]

[ϵ]

[ϵ]

[∗
]

⟿

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ϵ]←

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

[∗∗]← ∎

[[ϵ]]← {[ϵ]← ∎

[[∗]]←
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← ∎

[∗]← ∎

Reminder
∎ = {∗← ⧫

29



Syntax: examples

3

12

∎

∎∎∎

∎∎ ∎

[ϵ]

[[∗∗]][[∗]]

[∗∗
]

[∗]

[ϵ]

[ϵ]

[ϵ]

[∗
]
⟿

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ϵ]←

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[ϵ]← {∗← ⧫
[∗]← {∗← ⧫
[∗∗]← {∗← ⧫

[[ϵ]]← {[ϵ]← {∗← ⧫

[[∗]]←
⎧⎪⎪⎨⎪⎪⎩

[ϵ]← {∗← ⧫
[∗]← {∗← ⧫

Reminder
∎ = {∗← ⧫

29



Syntax

Question
Is this an opetope?

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ϵ]←

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[∗]← ⧫
[∗∗]← ⧫
[∗ ∗ ∗]← ⧫

[∗∗]← {[ϵ]← {[ϵ]← {[ϵ]← {[ϵ]← {[ϵ]← {[ϵ]← {[ϵ]← {[ϵ]← ⧫

[∗ ∗ ∗]←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ϵ]←

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[ϵ]← {[ϵ]← ⧫
[∗]← ⧫
[∗∗]← ⧫

[[ϵ]]← {[ϵ]← {∗← ⧫

[[[ϵ]]]←
⎧⎪⎪⎨⎪⎪⎩

[[[∗]]]← {∗← ⧫
[∗]← {∗← ⧫

[[∗ ∗ ∗]]← ⧫
30



System Opt?

The set of preopetopes P is defined by the following grammar:

P ::= ⧫

|
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A← P
⋮
A← P

| {{P

The Opt? system aims to characterize preopetopes that
actually are opetopes:

Theorem
Derivable preopetopes in system Opt? are in bijective
correspondence with opetopes.

31



System Opt?

The set of preopetopes P is defined by the following grammar:

P ::= ⧫

|
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A← P
⋮
A← P

| {{P

The Opt? system aims to characterize preopetopes that
actually are opetopes:

Theorem
Derivable preopetopes in system Opt? are in bijective
correspondence with opetopes.

31



System Opt?: the point rule

The first rule of Opt? states that we may create points without
any prior assumption:

point.

point⧫

32



System Opt?: the point rule

The first rule of Opt? states that we may create points without
any prior assumption:

point. point⧫

32



System Opt?: the degen rule

This rule takes an opetope and produces a degenerate
opetope from it:

.
degen.

⇓

p degen
{{p

33



System Opt?: the degen rule
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System Opt?: the shift rule

This rule takes an opetope p and produces a new opetope
having a unique node, decorated in p:

2

2

∎

∎∎

∎ ∎

[ϵ]

[[∗]]

[∗
]

[ϵ]

[ϵ]

[∗
]

shift

A
3

2 2
[ϵ]

[ϵ]

[[∗
]]

p
shift

{[ϵ]← p
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System Opt?: the graft rule

This rule glues an n-opetope q to an (n + 1)-opetope p, the
latter really just being a pasting diagram of n-opetopes:

.

.

.
⇓

.

. .

.
⇓

graft-[b]

.

. .

.
⇓

.
⇓

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[a1]← r1
⋮
[ak]← rk

q

graft-[b]⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[a1]← r1
⋮
[ak]← rk
[b]← q

(we omitted some technical assumptions that ensure this
operation is geometrically meaningful)
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Example

The proof tree of
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Examples

Write

n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ϵ]← {∗← ⧫
[∗]← {∗← ⧫
[∗∗]← {∗← ⧫
⋮
[∗n−1]← {∗← ⧫

=

∎

∎

∎

⋮

⧫

⧫

⧫

⧫

⧫

∗

∗

[ϵ]

[∗]

[∗∗⋯∗]
∗

∗

[ϵ]
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Conclusion

• In this presentation, we gave two ways to define opetopes
syntactically:

1. in a “named” way, using terms and system Opt!;
2. in an “unnamed” way, using preopetopes and system Opt?;

• The various constructs and algorithms can be easilyTM

implemented, and opetopes amount to valid proof trees.
An example implementation in Python 3 is available at
[Ho 18], where valid proof trees are represented by certain
expressions that evaluate without throwing any exception.

• In [CHM18] (see link on the first slide for a draft), we also
present variants of those systems for opetopic sets.

• We are experimenting with those new tools to
automatically check coherence laws for an appropriate
definition of opetopic ω-groupoid.
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Thank you for your attention!
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