TYPE THEORETICAL APPROACHES TO OPETOPES

Journées Logique Homotopie Catégories

Pierre-Louis Curien'  Cédric Ho Thanh? Samuel Mimram?
October 18th, 2018

TIRIF, Paris Diderot University

2|RIF, Paris Diderot University; this author has received funding from the European Union’s Horizon 2020 research
and innovation program under the Marie Sklodowska-Curie grant agreement N2665850

3LIX, Ecole Polytechnique



This presentation informally presents the main notions and
results of [CHM18] (in preparation, draft available at
chothanh.wordpress.com).
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Opetopes



In a nutshell...

Opetopes are shapes (akin to globules, cubes, simplices, etc.)
designed to represent the notion of composition in every
dimension. As such, they were introduced in [BD98] to
describe laws and coherence if weak higher categories.
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In a nutshell...

They are pasting diagrams where every cell is many-to-one.
Here is an example of a 3-opetope:

AAN
VARSI

Every cell above has dimension 2, so that a 3-opetope really is
a pasting diagram of cells of dimension 2.

We further ask those cells of dimension 2 to be 2-opetopes,
i.e. pasting diagram of cells of dimension 1 (the arrows).

We further ask those cells of dimension 1to be 1-opetopes,
i.e. pasting diagram (in a trivial way) of cells of dimension 0
(the points). .



Informal definition

Definition o
An n-opetope is a pasting diagram of (n —1)-opetopes



Informal definition

Definition o .
An n-opetope is a pasting diagram of (n —1)-opetopes i.e. a

finite set of (n - 1)-opetopes glued along (n —2)-opetopes.
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the point
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Definition: low dimensions

- There is a unique 0-dimensional opetope, which we'll call
the point

- There is a unique 1-opetope, the arrow:

—_—.

- 2-opetopes are pasting diagram of 1-opetopes, a.k.a. the

drrow m
M



Definition: dimension 3

- 3-opetopes are pasting diagrams of 2-opetopes
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Definition: dimension 3

- 3-opetopes are pasting diagrams of 2-opetopes
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Definition: dimension 3

- 3-opetopes are pasting diagrams of 2-opetopes



Definition: dimension 4

- The induction goes on: 4-opetopes are pasting diagrams
of 3-opetopes

AN A WA

A =

YN/



Definition: dimension 4

- The induction goes on: 4-opetopes are pasting diagrams
of 3-opetopes

This is getting out of hand...



Problem

1. The graphical approach is neither formal nor manageable
for dimensions > 4.
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polynomial monads and trees [K)BM10], which are both
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Problem

1. The graphical approach is neither formal nor manageable
for dimensions > 4.

2. A formal definition either use T-operads [Lei04] or
polynomial monads and trees [K)BM10], which are both
unintuitive and difficult to manipulate.

Solution . _
In this presentation, we give a rough sketch two ways to define
opetopes syntactically.



The “named” approach



1. Take an opetope.

LN~/ 0N
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1. Take an opetope.

g g
bua : C A b——>¢C
f/ 'Uﬁ\? = j/ Ufy \f’
a+>d a—_)d
J

J

2. Give names to everything.
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1. Take an opetope.

g g
bua : C A b——>¢C
f/ 'Uﬁ\? = j/ Ufy \f’
Qg >d q— > d
J J

2. Give names to everything.
3. Write down the graftings:

A:B(i < a) oo h(c< g(b<«f)) eoaeo@.
4. 777

5. Profit!
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- We start with a set of variable V = [1,,cy Vi, where
elements of V,, represent n-cells.
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elements of V,, represent n-cells.
- The set of n-terms is defined as
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- We start with a set of variable V = [1,,cy Vi, where
elements of V,, represent n-cells.
- The set of n-terms is defined as

Tn = Vn(Vn_‘l <—Tn,“‘)
| =

Examples
Fora,b,ceVy, f,g,heVy,

ae T, h(a< g,b < f)eT,

f(CI(—f(a(—f),G@f,aef)ETq, QETZ-

"



- An n-type is a sequence of terms of the form
51905y &0 .- 05, 80 S, q &0 ),

where s; € T, 1_;.
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- An n-type is a sequence of terms of the form
51905y &0 .- 05, 80 S, q &0 ),

where s; € T, 1_;.

- A n-typing is an expression of the form
t:T

where te T, and Tis an (n-1)-type.
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Main result of the named approach

Theorem
Derivable typings in system Opt' of the form

a:T

where a € V,, (as opposed to just Tp) are in bijective
correspondence (up to renaming of variables) with n-opetopes.
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System Opt': the point rule

The first rule of Opt' states that we may create points without
any prior assumption:

——point
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System Opt': the point rule

The first rule of Opt' states that we may create points without
any prior assumption:

—— point point

X

14



System Opt': the degen-fill rule

This rule takes an opetope and produces a degenerate
opetope from it:

————degen-fill

0
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System Opt': the degen-fill rule

This rule takes an opetope and produces a degenerate
opetope from it:

—— degen-fill X:T degen-fill

(5:)_(0—0X0—0T
[
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System Opt': the fill rule

This rule takes a pasting diagram (that is, a term), and creates
an opetope by “filling” it:

fill




System Opt': the fill rule

This rule takes a pasting diagram (that is, a term), and creates
an opetope by “filling” it:

fill




System Opt': the graft rule

This rules glues an opetope to a pasting diagram of the same
dimension:

NN

S—_—e ) S




System Opt': the graft rule

This rules glues an opetope to a pasting diagram of the same
dimension:

NN

S—_—e ) S

— graft-a
VALY
tiseel XiyeolU graft-a

t(a<x):s[yfa] == T



Example 1

Let's derive

a—d
J

b ’ G A b%g c
J/ HO;[ UB\7 }/ U’Y \7
e S —
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Example 1

Let's derive

g

b i @ A b———cC
OZJ@ fw\$ = 9/ Iy \¢
U%d qQ——

J
Derivation of «

———— point :
—bio e 02
g:beoy fiaeo

g(b<f):bla/b] e~ 2
—
=a

point
fill
graft-b

fill

a:gb<f)eocageoy



Example 1

Let's derive

b ‘ c A bim
J//IQ "uﬁ\“ = f/ %% N”
Q—d a
j

—_—d

J

Derivation of 3

—— point —— point
Ll 2L
Y 11029 graft-c
h(c<i):c[a/c] eo @
R_,—/
= fill

B:h(C+i)eoaeoy



Example 1

Let's derive

a—d
J

bﬂ ¢ c A bim
f/; ’wy = ’/ by \”
Q———>d
j :
And we assemble to get A

B:h(c<—i):o—oa-—°® a:g(bef):-—oao—OQ
Bli<a):h(c<)[g(b<f)/i]seaeea

=h(c—g(b<)
A:f(ica)eoh(cg(b«f))ecaeeg

graft-i

fill




Example 2

Let's derive

BON(TN

19



Example 2

Let's derive
'

Top left part

point

%]
a:a o= degen fill
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Example 2
Let's derive

Bottom part

— point — point
— b g 98 Ty
g:beoy f:Qeo g
G <) a2 graft-b
fill

B:g(b<fleocaeop
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Example 2
Let's derive
}

And we assemble

ﬁ:g(bef).o—oao—o@ OUQO—O:GO—OQ
a=brpB(f<a):gb<flaffleecaseg

>
=g

GZbI—A:ﬁ(fea)o—ogo—oa._og

graft-f

fill

19



The “unnamed” approach




Since opetopes are pasting diagrams whose cells are
many-to-one, they can be represented as trees:
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Since opetopes are pasting diagrams whose cells are
many-to-one, they can be represented as trees:

Then a cell in a pasting diagram no longer needs to have a
name, it can be identified by its address in that tree.
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Idea: dimension 0 and 1

Denote by ¢ the unique 0-opetope, a.k.a. the point:
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Idea: dimension 0 and 1

Denote by ¢ the unique 0-opetope, a.k.a. the point:
and by = the unique 1-opetope, a.k.a. the arrow:

o——"%0

We can represent = as a node of a tree as follows:
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Idea: dimension 0 and 1

Denote by ¢ the unique 0-opetope, a.k.a. the point:

and by = the unique 1-opetope, a.k.a. the arrow:

o——"%0

We can represent = as a node of a tree as follows:

[ ]
X
(o)}
—

Let us add address information.

21



Idea: dimension 2

Then we can:

1. create a tree with that node representing =

¢ -
m o [#x]
e
=4[]
¢ -

"¢ [€]
¢
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Idea: dimension 2

Then we can:

1. create a tree with that node representing =

¢ -
m o [#x]
e
=4[]
¢ -

"¢ [€]
¢

2. consider that tree like a node, where the input edges are
the nodes of said tree
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Idea: dimension 2

Then we can:

1. create a tree with that node representing =

¢ -
m o [#x]
e
=4[]
¢ -

"¢ [€]
¢

2. consider that tree like a node, where the input edges are
the nodes of said tree

3. be convinced that this is a good representation of some
2-opetope! 2



Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:

o 1 o 1 o
*
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Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:
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Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:

e 1 o
— x
2
| —

s =
—
(@)
| S—

é
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Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:
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Idea: dimension 3

From there, repeat the process!

2%



Idea: dimension 3

From there, repeat the process!
0 ¢ [[e]]
m | [€]
1¢[€]

2%



Idea: dimension 3

From there, repeat the process!

Y
D

€]

2%



Idea: dimension 3

From there, repeat the process!

2%



We now want a syntactical description of such trees.

25



We now want a syntactical description of such trees.

Solution

LN N

In an n-opetope, every node is decorated by (n —1)-opetope,
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We now want a syntactical description of such trees.

Solution

LN N

In an n-opetope, every node is decorated by (n —1)-opetope,
but (n —1)-opetope does not uniquely identify a node.
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We now want a syntactical description of such trees.

Solution

In an n-opetope, every node is decorated by (n —1)-opetope,
but (n —1)-opetope does not uniquely identify a node. But
addresses do! So we just need to describe a partial map

A I @n_’l. 25



We encode opetopes recursively as follows:
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We encode opetopes recursively as follows:
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We encode opetopes recursively as follows:

Reminder
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X
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i —
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(@)
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We encode opetopes recursively as follows:

Reminder

INo
Il
o § o 1 o
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%
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r
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We encode opetopes recursively as follows:

Convention
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We encode opetopes recursively as follows:

Convention
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Syntax: examples
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n
=
o
E
]
X
Q
X
©
i}
[
>
n
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Syntax: examples

01 [[e]
R (GRS
191 [[e]] < 0

Reminder
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Syntax: examples

0 ¢ [[e]]
m | [€] — [6] <« {[6] =
1¢le] [[e]] <0

Reminder
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Syntax: examples

Reminder

N}
I
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r
¥
| —
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Syntax: examples

Reminder
’ *
II[**]
ol [e] < =
3 = ag[x] = lx]es
ol [**](—- .
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Syntax: examples

Reminder

(O8]

I o B o ® o

L (] < »
[+] = D
[>e>(—] <~ nm
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Syntax: examples

[e] <=
[e] < [[*] <=
A [#%] < m
[le]] <1
[[*]] <2

Reminder
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u = {*<—Q
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Syntax: examples

Reminder
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Question
Is this an opetope?

[
[[] < 1
[X— * *] < [
(Gl
[+ +1] + o

30



System Opt’

The set of preopetopes P is defined by the following grammar:
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System Opt’

The set of preopetopes P is defined by the following grammar:
P ::=

A<P

A<P

I {r

The Opt’ system aims to characterize preopetopes that
actually are opetopes:

Theorem
Derivable preopetopes in system Opt’ are in bijective

correspondence with opetopes.
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System Opt’: the point rule

The first rule of Opt’ states that we may create points without
any prior assumption:

—— point
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System Opt’: the point rule

The first rule of Opt’ states that we may create points without
any prior assumption:

—— point Tpoint
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System Opt’: the degen rule

This rule takes an opetope and produces a degenerate
opetope from it:

———degen

[
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System Opt’: the degen rule

This rule takes an opetope and produces a degenerate
opetope from it:

%degen Ldegen

@ {r
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System Opt’: the shift rule

This rule takes an opetope p and produces a new opetope
having a unique node, decorated in p:

shift
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System Opt’: the shift rule

This rule takes an opetope p and produces a new opetope
having a unique node, decorated in p:

shift

34



System Opt’: the graft rule

This rule glues an n-opetope q to an (n+ 1)-opetope p, the
latter really just being a pasting diagram of n-opetopes:

AN N

-
’
—_— S—_— 5

graft-[b]

\VARY

—_ 5
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System Opt’: the graft rule

This rule glues an n-opetope q to an (n+ 1)-opetope p, the
latter really just being a pasting diagram of n-opetopes:

[a1] < 11
. » JREN : q
'/L\/;// M [Gk] <~ Iy
graft-[b] graft-[b]
WT\ .[Cl‘]] «n
‘[Gh] < I
[b] <q

(we omitted some technical assumptions that ensure this
operation is geometrically meaningful)
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The proof tree of

Tpoint
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The proof tree of
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The proof tree of

— point
shift
{*(—Q
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The proof tree of
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The proof tree of

graft-[x]
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The proof tree of

is:
— point
——— shift .
{+ <o — Ppoint
——shift ————shift
{[e]<{x< {<0
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The proof tree of

is:
— point
ey Shl'f'-t‘ __ point
shift shift
(= e
graft-[*]
{[5] <~ {x— <~ ¢
[*] <« {* <~ ¢

36



The proof tree of

VAL
is:
TpoinF
e shift —_ point
shift { shift '
(= o “Lgrafe]  gpoint
M -+
% { \ graft—[wf]
[*](—{*(—Q
{[**](—{*(—Q 36



Write
¢
n g [kt
(]« {x < !
(<]« {x <
no= qlefrer =
¢ |~
n-1 mel*
[* ]<—{>e<—0 ‘ E]
" 1[e]
¢
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The proof tree of

—_.

LN =N T

N
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The proof tree of

LN /N T

(E——

shift
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The proof tree of
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The proof tree of

. 1O

\Lﬁ
(@)
| —
| —
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The proof tree of

shift
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The proof tree of

— graft-[[€]]
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The proof tree of

Y ooo
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The proof tree of
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The proof tree of
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Conclusion

- In this presentation, we gave two ways to define opetopes
syntactically:
1. in a “named” way, using terms and system Opt";
2. in an “unnamed” way, using preopetopes and system Opt’;
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[Ho 18], where valid proof trees are represented by certain
expressions that evaluate without throwing any exception.
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Conclusion

- In this presentation, we gave two ways to define opetopes
syntactically:
1. in a “named” way, using terms and system Opt";
2. in an “unnamed” way, using preopetopes and system Opt’;

- The various constructs and algorithms can be easily™
implemented, and opetopes amount to valid proof trees.
An example implementation in Python 3 is available at
[Ho 18], where valid proof trees are represented by certain
expressions that evaluate without throwing any exception.

- In [CHM18] (see link on the first slide for a draft), we also
present variants of those systems for opetopic sets.

- We are experimenting with those new tools to
automatically check coherence laws for an appropriate

definition of opetopic w-groupoid.
42



Thank you for your attention!
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