TYPE THEORETICAL APPROACHES TO OPETOPES

Journées Logique Homotopie Catégories

Pierre-Louis Curien ${ }^{1}$ Cédric Ho Thanh ${ }^{2}$ Samuel Mimram ${ }^{3}$
October 18th, 2018
${ }^{1}$ IRIF, Paris Diderot University
${ }^{2}$ IRIF, Paris Diderot University; this author has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement №665850
${ }^{3}$ LIX, École Polytechnique

This presentation informally presents the main notions and results of [CHM18] (in preparation, draft available at chothanh.wordpress.com).

Contents

Opetopes

The "named" approach

The "unnamed" approach

Conclusion

Opetopes

In a nutshell...

Opetopes are shapes (akin to globules, cubes, simplices, etc.) designed to represent the notion of composition in every dimension. As such, they were introduced in [BD98] to describe laws and coherence if weak higher categories.

In a nutshell...

They are pasting diagrams where every cell is many-to-one. Here is an example of a 3-opetope:

In a nutshell...

They are pasting diagrams where every cell is many-to-one. Here is an example of a 3-opetope:

Every cell above has dimension 2, so that a 3-opetope really is a pasting diagram of cells of dimension 2 .

In a nutshell...

They are pasting diagrams where every cell is many-to-one. Here is an example of a 3-opetope:

Every cell above has dimension 2, so that a 3-opetope really is a pasting diagram of cells of dimension 2.

We further ask those cells of dimension 2 to be 2-opetopes, i.e. pasting diagram of cells of dimension 1 (the arrows).

In a nutshell...

They are pasting diagrams where every cell is many-to-one. Here is an example of a 3-opetope:

Every cell above has dimension 2, so that a 3-opetope really is a pasting diagram of cells of dimension 2.

We further ask those cells of dimension 2 to be 2-opetopes, i.e. pasting diagram of cells of dimension 1 (the arrows).

We further ask those cells of dimension 1 to be 1-opetopes, i.e. pasting diagram (in a trivial way) of cells of dimension 0 (the points).

Informal definition

Definition

An n-opetope is a pasting diagram of $(n-1)$-opetopes

Informal definition

Definition

An n-opetope is a pasting diagram of $(n-1)$-opetopes i.e. a finite set of $(n-1)$-opetopes glued along ($n-2$)-opetopes.

Definition: low dimensions

- There is a unique 0-dimensional opetope, which we'll call the point

Definition: low dimensions

- There is a unique 0-dimensional opetope, which we'll call the point
- There is a unique 1-opetope, the arrow:

Definition: low dimensions

- There is a unique 0-dimensional opetope, which we'll call the point
- There is a unique 1-opetope, the arrow:
- 2-opetopes are pasting diagram of 1-opetopes, a.k.a. the arrow

Definition: low dimensions

- There is a unique 0-dimensional opetope, which we'll call the point
- There is a unique 1-opetope, the arrow:
- 2-opetopes are pasting diagram of 1-opetopes, a.k.a. the arrow

Definition: low dimensions

- There is a unique 0-dimensional opetope, which we'll call the point
- There is a unique 1-opetope, the arrow:
- 2-opetopes are pasting diagram of 1-opetopes, a.k.a. the arrow

Definition: low dimensions

- There is a unique 0-dimensional opetope, which we'll call the point
- There is a unique 1-opetope, the arrow:
- 2-opetopes are pasting diagram of 1-opetopes, a.k.a. the arrow

Definition: low dimensions

- There is a unique 0-dimensional opetope, which we'll call the point
- There is a unique 1-opetope, the arrow:
- 2-opetopes are pasting diagram of 1-opetopes, a.k.a. the arrow

Definition: dimension 3

- 3-opetopes are pasting diagrams of 2-opetopes

Definition: dimension 3

- 3-opetopes are pasting diagrams of 2-opetopes

Definition: dimension 3

- 3-opetopes are pasting diagrams of 2-opetopes

Definition: dimension 3

- 3-opetopes are pasting diagrams of 2-opetopes

Definition: dimension 4

- The induction goes on: 4-opetopes are pasting diagrams of 3-opetopes

Definition: dimension 4

- The induction goes on: 4-opetopes are pasting diagrams of 3-opetopes

This is getting out of hand...

Motivation

Problem

1. The graphical approach is neither formal nor manageable for dimensions ≥ 4.

Problem

1. The graphical approach is neither formal nor manageable for dimensions ≥ 4.
2. A formal definition either use T-operads [Lei04] or polynomial monads and trees [KJBM10], which are both unintuitive and difficult to manipulate.

Motivation

Problem

1. The graphical approach is neither formal nor manageable for dimensions ≥ 4.
2. A formal definition either use T-operads [Lei04] or polynomial monads and trees [KJBM10], which are both unintuitive and difficult to manipulate.

Solution

In this presentation, we give a rough sketch two ways to define opetopes syntactically.

The "named" approach

1. Take an opetope.

2. Take an opetope.

3. Give names to everything.

Idea

1. Take an opetope.

2. Give names to everything.
3. Write down the graftings:

$$
A: \beta(i \leftarrow \alpha) \multimap h(c \leftarrow g(b \leftarrow f)) \multimap a \bullet \varnothing .
$$

4. ???
5. Profit!

Syntax

- We start with a set of variable $\mathbb{V}=\amalg_{n \in \mathbb{N}} \mathbb{V}_{n}$, where elements of \mathbb{V}_{n} represent n-cells.

Syntax

- We start with a set of variable $\mathbb{V}=\amalg_{n \in \mathbb{N}} \mathbb{V}_{n}$, where elements of \mathbb{V}_{n} represent n-cells.
- The set of n-terms is defined as

$$
\begin{aligned}
\mathbb{T}_{n} & ::=\mathbb{V}_{n}\left(\mathbb{V}_{n-1} \leftarrow \mathbb{T}_{n}, \cdots\right) \\
& \mid \underline{\mathbb{V}_{n-1}}
\end{aligned}
$$

Syntax

- We start with a set of variable $\mathbb{V}=\amalg_{n \in \mathbb{N}} \mathbb{V}_{n}$, where elements of \mathbb{V}_{n} represent n-cells.
- The set of n-terms is defined as

$$
\begin{aligned}
\mathbb{T}_{n} & ::=\mathbb{V}_{n}\left(\mathbb{V}_{n-1} \leftarrow \mathbb{T}_{n}, \cdots\right) \\
& \mid \underline{\mathbb{V}_{n-1}}
\end{aligned}
$$

Examples

For $a, b, c \in \mathbb{V}_{0}, f, g, h \in \mathbb{V}_{1}$,

$$
\begin{gathered}
a \in \mathbb{T}_{0}, \quad h(a \leftarrow g, b \leftarrow f) \in \mathbb{T}_{1}, \\
f(a \leftarrow f(a \leftarrow f), a \leftarrow f, a \leftarrow f) \in \mathbb{T}_{1}, \quad \underline{h} \in \mathbb{T}_{2} .
\end{gathered}
$$

Syntax

- An n-type is a sequence of terms of the form

$$
s_{1} \multimap s_{2} \multimap \cdots \multimap s_{n} \multimap s_{n+1} \multimap \varnothing,
$$

where $s_{i} \in \mathbb{T}_{n+1-i}$.

Syntax

- An n-type is a sequence of terms of the form

$$
s_{1} \multimap s_{2} \multimap \cdots \mapsto s_{n} \multimap s_{n+1} \multimap \varnothing \text {, }
$$

where $s_{i} \in \mathbb{T}_{n+1-i}$.

- A n-typing is an expression of the form

$$
t: T
$$

where $t \in \mathbb{T}_{n}$ and T is an ($n-1$)-type.

Main result of the named approach

Theorem
Derivable typings in system Opt! of the form

$$
\alpha: T
$$

where $\alpha \in \mathbb{V}_{n}$ (as opposed to just \mathbb{T}_{n}) are in bijective correspondence (up to renaming of variables) with n-opetopes.

System Opt': the point rule

The first rule of Opt' states that we may create points without any prior assumption:
..point

System Opt': the point rule

The first rule of Opt' states that we may create points without any prior assumption:

$$
\text { _ point } \quad \overline{x: \varnothing} \text { point }
$$

System Opt': the degen-fill rule

This rule takes an opetope and produces a degenerate opetope from it: degen-fill

System Opt': the degen-fill rule

This rule takes an opetope and produces a degenerate opetope from it:
degen-fill

$$
\frac{x: T}{\delta: \underline{x} \mapsto x \multimap T} \text { degen-fill }
$$

System Opt': the fill rule

This rule takes a pasting diagram (that is, a term), and creates an opetope by "filling" it:

System Opt': the fill rule

This rule takes a pasting diagram (that is, a term), and creates an opetope by "filling" it:

System Opt': the graft rule

This rules glues an opetope to a pasting diagram of the same dimension:

System Opt＇：the graft rule

This rules glues an opetope to a pasting diagram of the same dimension：

$$
\begin{aligned}
& \text { 变, 们 } \\
& \vec{V} \vec{V} \text { graft-a } \\
& \frac{t: s \multimap T \quad x: y \multimap U}{t(a \leftarrow x): s[y / a] \mapsto T} \text { graft }-a
\end{aligned}
$$

Example 1

Let's derive

Example 1

Let's derive

Derivation of α

Example 1

Let's derive

Derivation of β

Example 1

Let's derive

And we assemble to get A

$$
\begin{gathered}
\frac{\beta: h(c \leftarrow i) \multimap a \multimap \varnothing \quad \alpha: g(b \leftarrow f) \multimap a \bullet \varnothing}{\beta(i \leftarrow \alpha): \underbrace{h(c \leftarrow i)[g(b \leftarrow f) / i]}_{\equiv h(c \leftarrow g(b \leftarrow f))} \mapsto a \multimap \varnothing} \text { graft-i } \\
\frac{A: \beta(i \leftarrow \alpha) \multimap h(c \leftarrow g(b \leftarrow f)) \multimap a \multimap \varnothing}{} \text { fill }
\end{gathered}
$$

Example 2

Let's derive

Example 2

Let's derive

Top left part

$$
\frac{\overline{a: \varnothing} \text { point }}{\alpha: \underline{a} \bullet a \bullet \varnothing} \text { degen-fill }
$$

Example 2

Let's derive

Bottom part

Example 2

Let's derive

And we assemble

$$
\begin{align*}
& \frac{\beta: g(b \leftarrow f) \multimap a \multimap \varnothing \quad \alpha: \underline{a} \mapsto a \bullet \varnothing}{a=b \vdash \beta(f \leftarrow \alpha): \underbrace{g(b \leftarrow f)[a / f]}_{\equiv g} \multimap a \bullet \varnothing} \text { graft }-f \\
& a=b \vdash A: \beta(f \leftarrow \alpha) \multimap g \multimap a \bullet \varnothing \tag{fill}
\end{align*} \text { fill }
$$

The "unnamed" approach

Idea

Since opetopes are pasting diagrams whose cells are many-to-one, they can be represented as trees:

Idea

Since opetopes are pasting diagrams whose cells are many-to-one, they can be represented as trees:

Then a cell in a pasting diagram no longer needs to have a name, it can be identified by its address in that tree.

Idea: dimension 0 and 1

Denote by the unique 0-opetope, a.k.a. the point:

Idea: dimension 0 and 1

Denote by the unique 0-opetope, a.k.a. the point: and by the unique 1-opetope, a.k.a. the arrow:

Idea: dimension 0 and 1

Denote by the unique 0-opetope, a.k.a. the point: and by. the unique 1-opetope, a.k.a. the arrow:

We can represent as a node of a tree as follows:

Idea: dimension 0 and 1

Denote by the unique 0-opetope, a.k.a. the point:
and by. the unique 1-opetope, a.k.a. the arrow:

We can represent as a node of a tree as follows:

Let us add address information.

Idea: dimension 2

Then we can:

1. create a tree with that node representing -

-

Idea: dimension 2

Then we can:

1. create a tree with that node representing -

2. consider that tree like a node, where the input edges are the nodes of said tree

Idea: dimension 2

Then we can:

1. create a tree with that node representing -

2. consider that tree like a node, where the input edges are the nodes of said tree
3. be convinced that this is a good representation of some 2-opetope!

Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:

Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:

Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:

Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:

Idea: dimension 3

From there, repeat the process!

\leadsto

Idea: dimension 3

From there, repeat the process!

\leadsto

Idea: dimension 3

From there, repeat the process!

\leadsto

Idea: dimension 3

From there, repeat the process!

Syntax

We now want a syntactical description of such trees.

Syntax

We now want a syntactical description of such trees.
Solution

\leadsto

In an n-opetope, every node is decorated by ($n-1$)-opetope,

Syntax

We now want a syntactical description of such trees.
Solution

\leadsto

In an n-opetope, every node is decorated by ($n-1$)-opetope, but ($n-1$)-opetope does not uniquely identify a node.

Syntax

We now want a syntactical description of such trees.
Solution

In an n-opetope, every node is decorated by ($n-1$)-opetope, but ($n-1$)-opetope does not uniquely identify a node. But addresses do! So we just need to describe a partial map

$$
\mathbb{A} \longrightarrow \mathbb{O}_{n-1}
$$

Syntax

We encode opetopes recursively as follows:

Syntax

We encode opetopes recursively as follows:

Reminder

$$
\left.\underline{2}=* \left\lvert\, \begin{array}{|l}
* \\
{[*]} \\
*
\end{array}\right.\right]
$$

Syntax

We encode opetopes recursively as follows:

Reminder

$$
\underline{2}=\quad \begin{aligned}
& * \\
& * \\
& *
\end{aligned} \quad[\epsilon] \quad[\epsilon] \leftarrow \square
$$

Syntax

We encode opetopes recursively as follows:

$$
\leadsto\left\{\begin{array}{l}
{[\epsilon] \leftarrow\left\{\begin{array}{l}
{[\epsilon] \leftarrow:} \\
{[*] \leftarrow!}
\end{array}\right.} \\
{[[\epsilon]] \leftarrow\left\{\begin{array}{l}
{[\epsilon] \leftarrow:} \\
{[*] \leftarrow}
\end{array}\right.}
\end{array}\right.
$$

Reminder

$$
\underline{2}=: \begin{gathered}
* \\
: \\
:[*] \\
:[\epsilon]
\end{gathered}=\left\{\begin{array}{l}
{[\epsilon] \leftarrow} \\
{[*] \leftarrow}
\end{array}\right.
$$

Syntax

We encode opetopes recursively as follows:

Convention

$$
\text { - }=\{* \leftarrow
$$

Syntax

We encode opetopes recursively as follows:

$$
m s\left\{\begin{array}{l}
{[\epsilon] \leftarrow\left\{\begin{array}{l}
{[\epsilon] \leftarrow\{* \leftarrow} \\
{[*] \leftarrow\{* \leftarrow}
\end{array}\right.} \\
{[[\epsilon]] \leftarrow\left\{\begin{array}{l}
{[\epsilon] \leftarrow\{* \leftarrow} \\
{[*] \leftarrow\{* \leftarrow}
\end{array}\right.}
\end{array}\right.
$$

Convention

$$
\cdot=\{* \leftarrow 1
$$

Syntax: examples

$$
\begin{aligned}
& \underline{0} \cdot[[\epsilon]] \\
& : \\
& \underline{1} \cdot\left[\begin{array}{lc}
{[\epsilon]}
\end{array}\right]
\end{aligned}
$$

Syntax: examples

$$
\begin{aligned}
& \underline{0} \cdot[[\epsilon]]
\end{aligned}
$$

$$
\begin{aligned}
& \leadsto\left\{\begin{array}{l}
{[\epsilon] \leftarrow \underline{1}} \\
{[[\epsilon]] \leftarrow \underline{0}}
\end{array}\right.
\end{aligned}
$$

Syntax: examples

$$
\begin{aligned}
& \underline{0} \cdot[[\epsilon]] \\
& \cdot \\
& \underline{1} \cdot[\epsilon]
\end{aligned} \quad m \rightarrow\left\{\begin{array}{l}
{[\epsilon] \leftarrow \underline{1}} \\
{[[\epsilon]] \leftarrow \underline{0}}
\end{array}\right.
$$

Reminder

$$
\underline{1}=:\left.\right|^{*}[\epsilon]=\{[\epsilon] \leftarrow
$$

Syntax: examples

$$
\begin{aligned}
& \underline{0} \cdot[\epsilon]] \\
& \text { - } 1 \cdot[\epsilon] \quad \leadsto \Rightarrow\left\{\begin{array}{l}
{[\epsilon] \leftarrow\{[\epsilon]} \\
{[[\epsilon]] \leftarrow \underline{0}}
\end{array}\right.
\end{aligned}
$$

Reminder

$$
\underline{1}=\left.\right|^{*}[\epsilon]=\{[\epsilon] \leftarrow ■
$$

Syntax: examples

$$
\begin{aligned}
& \underline{0} \cdot[[\epsilon]] \\
& - \\
& \underline{1}
\end{aligned}\left[[\epsilon] \quad \left[\begin{array} { l }
{ [\epsilon] }
\end{array} \leadsto \left\{\begin{array}{l}
{[\epsilon] \leftarrow\{[\epsilon] \leftarrow} \\
{[[\epsilon]] \leftarrow \underline{0}}
\end{array}\right.\right.\right.
$$

Reminder

$$
=\{* \leftarrow 1
$$

Syntax: examples

$$
\begin{aligned}
& \underline{0} \cdot[[\epsilon]] \\
& :\left[\begin{array}{l}
{[\epsilon]} \\
1
\end{array}:[\epsilon]\right. \\
& \cdot
\end{aligned} \quad \sim \rightarrow\left\{\begin{array}{l}
{[\epsilon] \leftarrow\{[\epsilon] \leftarrow\{* \leftarrow} \\
{[[\epsilon]] \leftarrow \underline{0}}
\end{array}\right.
$$

Reminder

$$
\square=\{x \leftarrow
$$

Syntax: examples

$$
\begin{aligned}
& \underline{0} \cdot[[\epsilon]] \\
& :\left[\begin{array}{l}
{[\epsilon]} \\
1 \\
\bullet
\end{array}:[\epsilon]\right.
\end{aligned} \quad \leadsto\left\{\begin{array}{l}
{[\epsilon] \leftarrow\{[\epsilon] \leftarrow\{* \leftarrow} \\
{[[\epsilon]] \leftarrow \underline{0}}
\end{array}\right.
$$

Reminder + convention

$$
\underline{0}=* \quad\{\|
$$

Syntax: examples

$$
\begin{aligned}
& \underline{0} \cdot[[\epsilon]] \\
& :[\varepsilon] \\
& 1 \\
& -
\end{aligned} d[\epsilon] \quad \leadsto\left\{\begin{array}{l}
{[\epsilon] \leftarrow\{[\epsilon] \leftarrow\{* \leftarrow *} \\
{[[\epsilon]] \leftarrow\{\{ }
\end{array}\right.
$$

Reminder + convention

$$
\underline{0}=* \quad\{\|
$$

Syntax: examples

Syntax: examples

2

$$
\leadsto\left\{\begin{array}{l}
{[\epsilon] \leftarrow \underline{2}} \\
{[[\epsilon]] \leftarrow \underline{0}}
\end{array}\right.
$$

Syntax: examples

Reminder

$$
\underline{2}=\bullet_{\bullet}^{*} \cdot \stackrel{*}{*} \begin{aligned}
& * \\
& \bullet[\epsilon]
\end{aligned}=\left\{\begin{array}{l}
{[\epsilon] \leftarrow} \\
{[*] \leftarrow}
\end{array}\right.
$$

Syntax: examples

Reminder

Syntax: examples

Reminder

$$
=\{* \leftarrow 1
$$

Syntax: examples

$$
\begin{aligned}
& \text { = } \\
& \leadsto\left\{\begin{array}{l}
{[\epsilon] \leftarrow\left\{\begin{array}{l}
{[\epsilon] \leftarrow\{* \leftarrow} \\
{[*] \leftarrow\{* \leftarrow} \\
{[[\epsilon]] \leftarrow \underline{0}}
\end{array},\right.}
\end{array}\right.
\end{aligned}
$$

Reminder

$$
\cdot=\{* \leftarrow 1
$$

Syntax: examples

$$
\text { : } \quad \frac{0}{[[*]]} \sim\left\{\begin{array}{l}
{[\epsilon] \leftarrow\left\{\begin{array}{l}
{[\epsilon] \leftarrow\{* \leftarrow} \\
{[*] \leftarrow\{* \leftarrow}
\end{array}\right.} \\
{[[\epsilon]] \leftarrow \underline{0}}
\end{array}\right.
$$

Reminder

$$
\underline{0}=* \quad\{\quad\{
$$

Syntax: examples

Reminder

$$
\underline{0}=\bullet \mid=\left\{\int\right.
$$

Syntax: examples

Syntax: examples

Syntax: examples

Reminder

$$
\begin{aligned}
& \cdot \bullet[\epsilon]
\end{aligned}
$$

Syntax: examples

Reminder

$$
\underline{3}=\quad \bullet \cdot \left\lvert\, \begin{aligned}
& * \\
& \bullet \\
& \bullet * * *] \\
& *
\end{aligned}=\left\{\begin{array}{l}
{[\epsilon] \leftarrow \bullet} \\
{[*] \leftarrow!} \\
{[* *] \leftarrow!}
\end{array}\right.\right.
$$

Syntax: examples

Reminder

$$
1=:\left.\right|^{*}[\epsilon]=\{[\epsilon] \leftarrow
$$

Syntax: examples

Reminder

$$
1=:\left.\right|^{*}[\epsilon]=\{[\epsilon] \leftarrow
$$

Syntax: examples

Reminder

Syntax: examples

Reminder

$$
\underline{2}=\quad \begin{aligned}
& * \\
& * \\
& * \\
& *
\end{aligned} \quad[\epsilon] \quad[\epsilon] \leftarrow ■
$$

Syntax: examples

Reminder

$$
=\{* \leftarrow 1
$$

Syntax: examples

Reminder

$$
\text { - }=\{* \leftarrow 1
$$

Syntax

Question

Is this an opetope?

$$
\begin{aligned}
& \left\{[\epsilon] \leftarrow \left\{\begin{array}{l}
{[*] \leftarrow,} \\
{[* *] \leftarrow} \\
{[* * *] \leftarrow}
\end{array}\right.\right. \\
& {[* *] \leftarrow\{[\epsilon] \leftarrow\{[\epsilon] \leftarrow\{[\epsilon] \leftarrow\{[\epsilon] \leftarrow\{[\epsilon] \leftarrow\{[\epsilon] \leftarrow\{[\epsilon] \leftarrow\{[\epsilon] \leftarrow *} \\
& {\left[[* * *] \leftarrow \left\{\begin{array}{l}
{[\epsilon] \leftarrow\{[\epsilon] \leftarrow *} \\
{[*] \leftarrow} \\
{[* *] \leftarrow}
\end{array}\right.\right.} \\
& {[[\epsilon]] \leftarrow\{[\epsilon] \leftarrow\{* \leftarrow *} \\
& {[[[\epsilon]]] \leftarrow\left\{\begin{array}{l}
{[[[*]]] \leftarrow\{* \leftarrow *} \\
{[*] \leftarrow\{* \leftarrow}
\end{array}\right.} \\
& {[[\text { ***]] } \leftarrow}
\end{aligned}
$$

System Opt?

The set of preopetopes \mathbb{P} is defined by the following grammar:

$$
\begin{aligned}
\mathbb{P}: & := \\
& \mid \\
& \left\{\begin{array}{l}
\mathbb{A} \leftarrow \mathbb{P} \\
\vdots \\
\mathbb{A} \leftarrow \mathbb{P}
\end{array}\right. \\
& \mid\{\mathbb{P}
\end{aligned}
$$

System Opt?

The set of preopetopes \mathbb{P} is defined by the following grammar:

$$
\begin{aligned}
& \mathbb{P}::= \\
& \text { | }\left\{\begin{array}{l}
\mathbb{A} \leftarrow \mathbb{P} \\
\vdots \\
\mathbb{A} \leftarrow \mathbb{P}
\end{array}\right. \\
& \text { \| }\left\{\int \mathbb{P}\right.
\end{aligned}
$$

The Opt? system aims to characterize preopetopes that actually are opetopes:

Theorem

Derivable preopetopes in system Opt? are in bijective correspondence with opetopes.

System Opt? ${ }^{\text {? }}$ the point rule

The first rule of Opt? states that we may create points without any prior assumption:
_. point

System Opt? ${ }^{\text {? }}$ the point rule

The first rule of Opt? states that we may create points without any prior assumption:
. point

- point

System Opt? ${ }^{\text {? }}$ the degen rule

This rule takes an opetope and produces a degenerate opetope from it:

System Opt? ${ }^{\text {? }}$ the degen rule

This rule takes an opetope and produces a degenerate opetope from it:

$\frac{p}{\left\{\int p\right.}$ degen

System Opt?: the shift rule

This rule takes an opetope p and produces a new opetope having a unique node, decorated in p :

System Opt?: the shift rule

This rule takes an opetope p and produces a new opetope having a unique node, decorated in p :

System Opt? ${ }^{\text {? }}$ the graft rule

This rule glues an n-opetope q to an $(n+1)$-opetope p, the latter really just being a pasting diagram of n-opetopes:

graft-[b]

System Opt?: the graft rule

This rule glues an n-opetope q to an $(n+1)$-opetope p, the latter really just being a pasting diagram of n-opetopes:

(we omitted some technical assumptions that ensure this operation is geometrically meaningful)

Example

The proof tree of
is:

- point

Example

The proof tree of

is:

$$
\frac{\square \text { point }}{\{[\epsilon] \leftarrow} \text { shift }
$$

Example

The proof tree of

is:

$$
\frac{\square \text { point }}{\{* \leftarrow} \text { shift }
$$

Example

The proof tree of

is:

$$
\begin{gathered}
\frac{\square \text { point }}{\{* \leftarrow} \text { shift } \\
\{[\epsilon] \leftarrow\{* \leftarrow \\
\text { shift }
\end{gathered}
$$

Example

The proof tree of

is:

$$
\begin{aligned}
& \frac{\square \text { point }}{\{* \leftarrow} \text { shift } \\
& \text { shift } \frac{\downarrow}{\{[\epsilon] \leftarrow} \text { shift } \\
& \begin{cases}{[\epsilon] \leftarrow\{* \leftarrow} & \text { graft }-[*] \\
{[*] \leftarrow\{* \leftarrow} & \{[\epsilon] \leftarrow\end{cases} \\
& \left\{\begin{array}{l}
{[\epsilon] \leftarrow\{* \leftarrow} \\
{[*] \leftarrow\{* \leftarrow} \\
{[* *] \leftarrow\{* \leftarrow}
\end{array}\right.
\end{aligned}
$$

Examples

Write

Examples

The proof tree of

is:
\vdots
$\underline{2}$

Examples

The proof tree of

is:

$$
\frac{\underline{2}}{\{[\epsilon] \leftarrow \underline{2}} \text { shift }
$$

Examples

The proof tree of

is:

$$
\frac{\frac{\underline{2}}{\{[\epsilon] \leftarrow \underline{2}} \text { shift }}{} \begin{array}{ll}
\left\{\begin{array}{l}
{[\epsilon] \leftarrow \underline{2}} \\
{[[*]] \leftarrow \underline{2}}
\end{array}\right. & \text { graft }-[[*]]
\end{array}
$$

Example

The proof tree of

is
\vdots
1

Example

The proof tree of

is

Example

The proof tree of

is

$$
\frac{\frac{\underline{\vdots}}{\{[\epsilon] \leftarrow \underline{1}} \text { shift }}{\frac{\vdots}{\underline{0}}} \begin{array}{ll}
\{[\epsilon] \leftarrow 1 & \\
\{[\epsilon]] \leftarrow \underline{0}
\end{array} \quad \text { graft }-[[\epsilon]]
$$

Example

The proof tree of

is
\vdots
$\underline{2}$

Example

The proof tree of

is

$$
\frac{\underline{2}}{\{[\epsilon] \leftarrow \underline{2}} \text { shift }
$$

Example

The proof tree of

is

$$
\frac{\frac{\underline{2}}{\{[\epsilon] \leftarrow \underline{2}} \text { shift } \quad \begin{array}{l}
\underline{0} \\
\left\{\begin{array}{l}
{[\epsilon] \leftarrow \underline{2}} \\
{[[*]] \leftarrow \underline{0}}
\end{array}\right. \\
\text { graft }-[[*]]
\end{array}}{}
$$

Example

Example

Example

Example

$$
\begin{array}{ll}
\frac{\underline{3}}{\{[\epsilon] \leftarrow \underline{3}} \text { shift } & \begin{array}{l}
\vdots \\
\underline{2} \\
\text { graft }-[[*]]
\end{array} \\
\begin{cases}{[\epsilon] \leftarrow \underline{3}} \\
{[[* *] \leftarrow \underline{2}}\end{cases} & \begin{array}{l}
\underline{1}
\end{array} \\
\left\{\begin{array}{l}
{[\epsilon] \leftarrow \underline{3}} \\
{[[*]] \leftarrow} \\
{[[* *]] \leftarrow 1}
\end{array}\right.
\end{array}
$$

Conclusion

Conclusion

- In this presentation, we gave two ways to define opetopes syntactically:

1. in a "named" way, using terms and system Opt';
2. in an "unnamed" way, using preopetopes and system Opt?;

Conclusion

- In this presentation, we gave two ways to define opetopes syntactically:

1. in a "named" way, using terms and system Opt';
2. in an "unnamed" way, using preopetopes and system Opt?;

- The various constructs and algorithms can be easily ${ }^{\text {TM }}$ implemented, and opetopes amount to valid proof trees. An example implementation in Python 3 is available at [Ho 18], where valid proof trees are represented by certain expressions that evaluate without throwing any exception.

Conclusion

- In this presentation, we gave two ways to define opetopes syntactically:

1. in a "named" way, using terms and system Opt';
2. in an "unnamed" way, using preopetopes and system Opt?;

- The various constructs and algorithms can be easily ${ }^{\top M}$ implemented, and opetopes amount to valid proof trees. An example implementation in Python 3 is available at [Ho 18], where valid proof trees are represented by certain expressions that evaluate without throwing any exception.
- In [CHM18] (see link on the first slide for a draft), we also present variants of those systems for opetopic sets.

Conclusion

- In this presentation, we gave two ways to define opetopes syntactically:

1. in a "named" way, using terms and system Opt';
2. in an "unnamed" way, using preopetopes and system Opt?;

- The various constructs and algorithms can be easily ${ }^{\top M}$ implemented, and opetopes amount to valid proof trees. An example implementation in Python 3 is available at [Ho 18], where valid proof trees are represented by certain expressions that evaluate without throwing any exception.
- In [CHM18] (see link on the first slide for a draft), we also present variants of those systems for opetopic sets.
- We are experimenting with those new tools to automatically check coherence laws for an appropriate definition of opetopic ω-groupoid.

Thank you for your attention!

References i

目 John C．Baez and James Dolan．
Higher－dimensional algebra．III．n－categories and the algebra of opetopes．
Advances in Mathematics，135（2）：145－206， 1998.
國 Pierre－Louis Curien，Cédric Ho Thanh，and Samuel Mimram．

Type theoretical approaches for opetopes．
In preparation， 2018.
國 Cédric Ho Thanh．
opetopy．
https：／／github．com／altaris／opetopy，April 2018.

References ii

E Joachim Kock, André Joyal, Michael Batanin, and Jean-François Mascari.
Polynomial functors and opetopes.
Advances in Mathematics, 224(6):2690-2737, 2010.
屢 Tom Leinster.
Higher Operads, Higher Categories.
Cambridge University Press, 2004.

