TYPE THEORETICAL APPROACHES TO OPETOPES

Journées Logique Homotopie Catégories

Pierre-Louis Curien¹ Cédric Ho Thanh² Samuel Mimram³ October 18th, 2018

¹IRIF, Paris Diderot University

²IRIF, Paris Diderot University; this author has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement №665850

³LIX, École Polytechnique

This presentation informally presents the main notions and results of [CHM18] (in preparation, draft available at **chothanh.wordpress.com**).

Opetopes

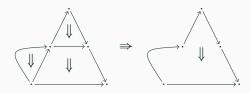
The "named" approach

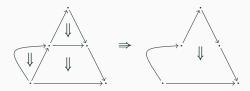
The "unnamed" approach

Conclusion

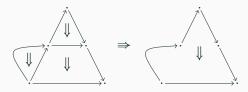
Opetopes

Opetopes are shapes (akin to globules, cubes, simplices, etc.) designed to represent the notion of composition in every dimension. As such, they were introduced in [BD98] to describe laws and coherence if weak higher categories.



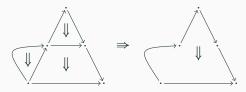


Every cell above has dimension 2, so that a 3-opetope really is a pasting diagram of cells of dimension 2.



Every cell above has dimension 2, so that a 3-opetope really is a pasting diagram of cells of dimension 2.

We further ask those cells of dimension 2 to be 2-opetopes, i.e. pasting diagram of cells of dimension 1 (the arrows).



Every cell above has dimension 2, so that a 3-opetope really is a pasting diagram of cells of dimension 2.

We further ask those cells of dimension 2 to be 2-opetopes, i.e. pasting diagram of cells of dimension 1 (the arrows).

We further ask those cells of dimension 1 to be 1-opetopes, i.e. pasting diagram (in a trivial way) of cells of dimension 0 (the points).

Definition An *n*-opetope is a pasting diagram of (n - 1)-opetopes

Definition An *n*-opetope is a pasting diagram of (n - 1)-opetopes i.e. a finite set of (n - 1)-opetopes glued along (n - 2)-opetopes.

• There is a unique 0-dimensional opetope, which we'll call the *point*

٠

• There is a unique 0-dimensional opetope, which we'll call the *point*

٠

 $\rightarrow \cdot$

• There is a unique 1-opetope, the arrow:

• There is a unique 0-dimensional opetope, which we'll call the *point*

٠

• There is a unique 1-opetope, the arrow:

• There is a unique 0-dimensional opetope, which we'll call the *point*

• There is a unique 1-opetope, the arrow:

• There is a unique 0-dimensional opetope, which we'll call the *point*

• There is a unique 1-opetope, the arrow:

• There is a unique 0-dimensional opetope, which we'll call the *point*

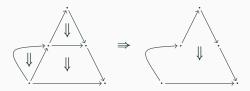
• There is a unique 1-opetope, the arrow:

• There is a unique 0-dimensional opetope, which we'll call the *point*

٠

• There is a unique 1-opetope, the arrow:

• 3-opetopes are pasting diagrams of 2-opetopes



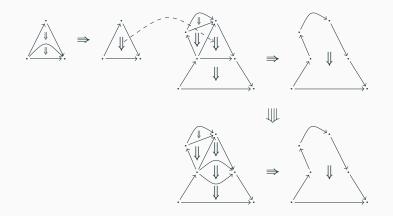
· 3-opetopes are pasting diagrams of 2-opetopes

• 3-opetopes are pasting diagrams of 2-opetopes

· 3-opetopes are pasting diagrams of 2-opetopes

$$\overbrace{\hspace{1.5cm}}^{}$$

• The induction goes on: 4-opetopes are pasting diagrams of 3-opetopes



• The induction goes on: 4-opetopes are pasting diagrams of 3-opetopes

This is getting out of hand...

Problem

1. The graphical approach is neither formal nor manageable for dimensions ≥ 4 .

Problem

- 1. The graphical approach is neither formal nor manageable for dimensions ≥ 4 .
- 2. A formal definition either use *T*-operads [Lei04] or polynomial monads and trees [KJBM10], which are both unintuitive and difficult to manipulate.

Problem

- 1. The graphical approach is neither formal nor manageable for dimensions ≥ 4 .
- 2. A formal definition either use *T*-operads [Lei04] or polynomial monads and trees [KJBM10], which are both unintuitive and difficult to manipulate.

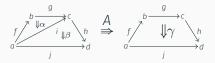
Solution

In this presentation, we give a **rough sketch** two ways to define opetopes syntactically.

The "named" approach

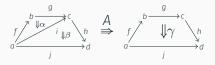
1. Take an opetope.

1. Take an opetope.



2. Give names to everything.

1. Take an opetope.



- 2. Give names to everything.
- 3. Write down the graftings:

$$A:\beta(i\leftarrow\alpha) \bullet o h(c\leftarrow g(b\leftarrow f)) \bullet o a \bullet o \varnothing.$$

- 4. ???
- 5. Profit!

• We start with a set of variable $\mathbb{V} = \coprod_{n \in \mathbb{N}} \mathbb{V}_n$, where elements of \mathbb{V}_n represent *n*-cells.

Syntax

- We start with a set of variable $\mathbb{V} = \coprod_{n \in \mathbb{N}} \mathbb{V}_n$, where elements of \mathbb{V}_n represent *n*-cells.
- The set of *n*-terms is defined as

$$\mathbb{T}_n \quad ::= \quad \mathbb{V}_n(\mathbb{V}_{n-1} \leftarrow \mathbb{T}_n, \cdots)$$
$$| \quad \underline{\mathbb{V}_{n-1}}$$

Syntax

- We start with a set of variable $\mathbb{V} = \coprod_{n \in \mathbb{N}} \mathbb{V}_n$, where elements of \mathbb{V}_n represent *n*-cells.
- The set of *n*-terms is defined as

$$\mathbb{T}_n \quad ::= \quad \mathbb{V}_n(\mathbb{V}_{n-1} \leftarrow \mathbb{T}_n, \cdots)$$
$$| \quad \underline{\mathbb{V}_{n-1}}$$

Examples For $a, b, c \in \mathbb{V}_0, f, g, h \in \mathbb{V}_1$,

$$a \in \mathbb{T}_0, \qquad h(a \leftarrow g, b \leftarrow f) \in \mathbb{T}_1,$$

 $f(a \leftarrow f(a \leftarrow f), a \leftarrow f, a \leftarrow f) \in \mathbb{T}_1, \qquad \underline{h} \in \mathbb{T}_2.$

• An *n*-type is a sequence of terms of the form

$$S_1 \bullet S_2 \bullet \cdots \bullet S_n \bullet S_{n+1} \bullet \emptyset,$$

where $s_i \in \mathbb{T}_{n+1-i}$.

• An *n*-type is a sequence of terms of the form

$$S_1 \bullet S_2 \bullet \cdots \bullet S_n \bullet S_{n+1} \bullet \emptyset,$$

where $s_i \in \mathbb{T}_{n+1-i}$.

• A *n*-typing is an expression of the form

t : T

where $t \in \mathbb{T}_n$ and T is an (n-1)-type.

Theorem Derivable typings in system **Opt**[!] of the form

$\alpha: T$

where $\alpha \in \mathbb{V}_n$ (as opposed to just \mathbb{T}_n) are in bijective correspondence (up to renaming of variables) with *n*-opetopes.

The first rule of **Opt**[!] states that we may create points without any prior assumption:

—___ point

The first rule of **Opt**[!] states that we may create points without any prior assumption:

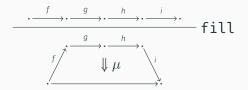
$$--$$
 point $-\frac{1}{X \cdot \emptyset}$ point

This rule takes an opetope and produces a degenerate opetope from it:

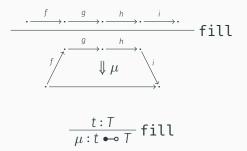
This rule takes an opetope and produces a degenerate opetope from it:

$$\frac{x:T}{\delta:\underline{x} \leftrightarrow x \leftrightarrow T} \text{ degen-fill}$$

This rule takes a pasting diagram (that is, a term), and creates an opetope by "filling" it:



This rule takes a pasting diagram (that is, a term), and creates an opetope by "filling" it:



This rules glues an opetope to a pasting diagram of the same dimension:

This rules glues an opetope to a pasting diagram of the same dimension:

$$\xrightarrow{\dot{I}}$$

$$\frac{t:s \bullet T \quad x:y \bullet U}{t(a \leftarrow x):s[y/a] \bullet T} \operatorname{graft}_a$$

Let's derive



.

Let's derive

Derivation of α

$$\frac{\overline{b:\varnothing} \text{ point}}{\underline{g:b \leftrightarrow \varnothing} \text{ fill}} \frac{\overline{a:\varnothing} \text{ point}}{f:a \leftarrow \varnothing} \text{ fill} \frac{\overline{a:\varnothing} \text{ point}}{g(b \leftarrow f):b[a/b]} \text{ eraft-b} \frac{\overline{g(b \leftarrow f)} \text{ eraft-b}}{\overline{a:g(b \leftarrow f)} \text{ eraft-b}} \text{ fill}$$

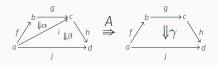
Let's derive



Derivation of β

$$\frac{\overline{c:\varnothing} \text{ point}}{h:c \leftrightarrow \varnothing} \begin{array}{c} \overline{\text{fill}} & \overline{a:\varnothing} \text{ point} \\ \hline \overline{a:\emptyset} \text{ point} \\ \hline \overline{i:a \leftrightarrow \varnothing} \text{ fill} \\ \hline h(c \leftarrow i): \underline{c[a/c]} \leftrightarrow \varnothing \\ \hline \overline{\beta:h(c \leftarrow i)} \leftrightarrow a \leftarrow \varnothing \end{array} \begin{array}{c} \text{fill} \\ \hline \text{fill} \\ \hline \overline{\beta:h(c \leftarrow i)} \leftarrow a \leftarrow \varnothing \end{array}$$

Let's derive



And we assemble to get A

$$\begin{array}{c} \vdots & \vdots \\ \beta:h(c \leftarrow i) \bullet a \bullet \phi & \alpha:g(b \leftarrow f) \bullet a \bullet \phi & \beta \\ \hline \beta(i \leftarrow \alpha): \underbrace{h(c \leftarrow i)[g(b \leftarrow f)/i]}_{\equiv h(c \leftarrow g(b \leftarrow f))} \bullet a \bullet \phi & \beta \\ \hline A: \beta(i \leftarrow \alpha) \bullet \phi & h(c \leftarrow g(b \leftarrow f)) \bullet \phi & a \bullet \phi & \beta \end{array} graft-i$$

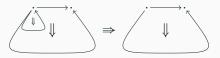
Let's derive

Let's derive

Top left part

$$\frac{\overline{a: \varnothing} \text{ point}}{\alpha: \underline{a} \leftrightarrow a \leftrightarrow \varnothing} \text{ degen-fill}$$

Let's derive



Bottom part

$$\frac{\overline{b:\varnothing} \text{ point}}{\frac{g:b \leftrightarrow \varnothing}{f:a \leftrightarrow \varnothing} \text{ fill}} \frac{\overline{a:\varnothing} \text{ point}}{\frac{f:a \leftrightarrow \varnothing}{f:a \leftrightarrow \varnothing} \text{ fill}} \frac{g(b \leftarrow f):a \leftrightarrow \varnothing}{graft-b}$$

19

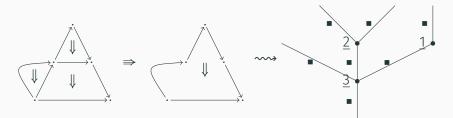
Let's derive

And we assemble

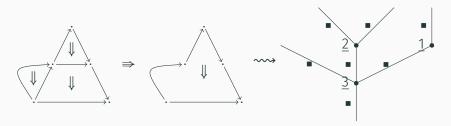
$$\begin{array}{c} \vdots \\ \beta:g(b \leftarrow f) \bullet a \bullet \phi \varnothing & \alpha:\underline{a} \bullet \phi & a \bullet \phi \varnothing \\ \hline a = b \vdash \beta(f \leftarrow \alpha): \underbrace{g(b \leftarrow f)[\underline{a}/f]}_{\equiv g} \bullet \phi & a \bullet \phi \varnothing \end{array} graft-f \\ \hline a = b \vdash A: \beta(f \leftarrow \alpha) \bullet \phi & g \bullet \phi & a \bullet \phi \varnothing \end{array} fill$$

The "unnamed" approach

Since opetopes are pasting diagrams whose cells are *many-to-one*, they can be represented as trees:



Since opetopes are pasting diagrams whose cells are *many-to-one*, they can be represented as trees:



Then a cell in a pasting diagram no longer needs to have a name, it can be identified by its *address* in that tree.

Idea: dimension 0 and 1

Denote by \blacklozenge the unique 0-opetope, a.k.a. the point:

Idea: dimension 0 and 1

Denote by ♦ the unique 0-opetope, a.k.a. the point:

and by \blacksquare the unique 1-opetope, a.k.a. the arrow:

· _____ ·

Denote by \blacklozenge the unique 0-opetope, a.k.a. the point:

and by **•** the unique 1-opetope, a.k.a. the arrow:

We can represent **•** as a node of a tree as follows:

Denote by \blacklozenge the unique 0-opetope, a.k.a. the point:

and by **•** the unique 1-opetope, a.k.a. the arrow:

We can represent **•** as a node of a tree as follows:

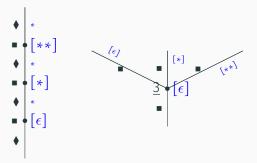
Let us add address information.

Then we can:

1. create a tree with that node representing -

Then we can:

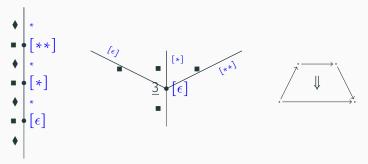
1. create a tree with that node representing -



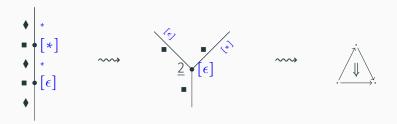
2. consider that tree like a node, where the input edges are the nodes of said tree

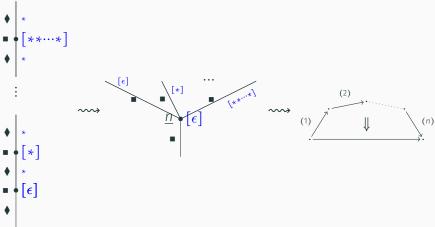
Then we can:

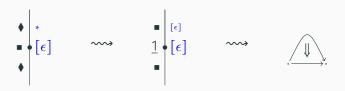
1. create a tree with that node representing -

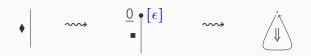


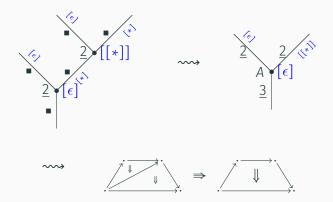
- 2. consider that tree like a node, where the input edges are the nodes of said tree
- 3. be convinced that this is a good representation of some 2-opetope!

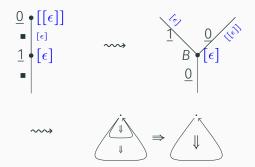


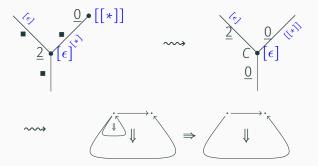


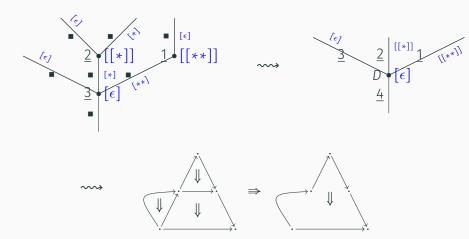






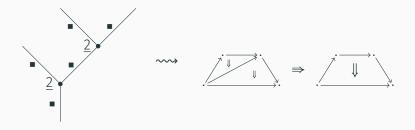






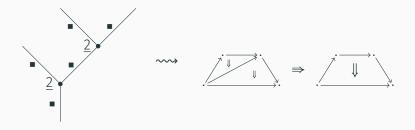
We now want a syntactical description of such trees.

We now want a syntactical description of such trees. Solution



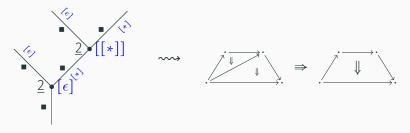
In an *n*-opetope, every node is decorated by (n-1)-opetope,

We now want a syntactical description of such trees. Solution



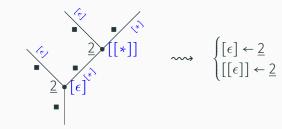
In an *n*-opetope, every node is decorated by (n - 1)-opetope, but (n - 1)-opetope does not uniquely identify a node.

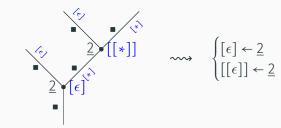
We now want a syntactical description of such trees. Solution



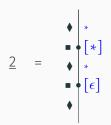
In an *n*-opetope, every node is decorated by (n - 1)-opetope, but (n - 1)-opetope does not uniquely identify a node. But addresses do! So we just need to describe a partial map

$$\mathbb{A} \longrightarrow \mathbb{O}_{n-1}.$$
²⁵

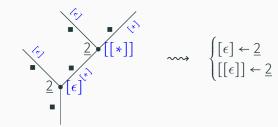




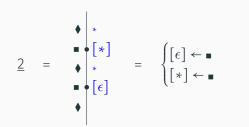
Reminder



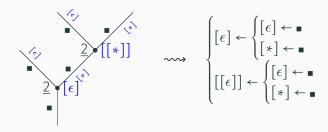
26

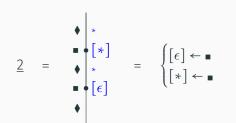


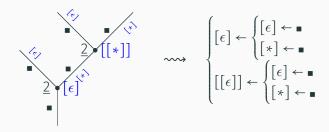
Reminder



26

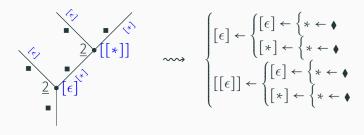






Convention

 $\bullet \rightarrow * \} = \bullet$



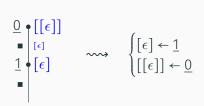
Convention

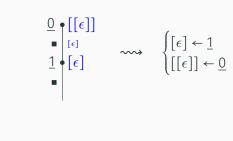
■ = {* ← ◆

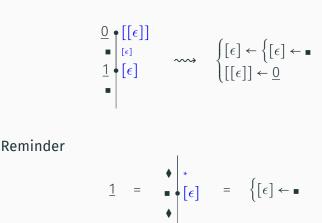
$$\underline{\underline{0}} \bullet \begin{bmatrix} [\epsilon] \end{bmatrix}$$

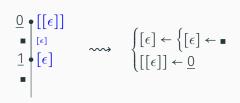
$$\underline{\underline{0}} \bullet \begin{bmatrix} \epsilon \end{bmatrix}$$

$$\underline{\underline{1}} \bullet \begin{bmatrix} \epsilon \end{bmatrix}$$









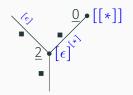
$$\underbrace{ \begin{array}{c} \underline{0} \\ \bullet \end{array} }_{\left[\epsilon \right]} \left[\begin{array}{c} \epsilon \end{array} \right] \\ \underline{1} \\ \bullet \end{array} \right] \left[\begin{array}{c} \epsilon \end{array} \right] \left[\begin{array}{c} \epsilon \end{array} \right] \\ \hline \epsilon \end{array} \right] \left[\begin{array}{c} \epsilon \end{array} \end{array}] \left[\begin{array}{c} \epsilon \end{array} \end{array}] \left[\begin{array}{c} \epsilon \end{array} \\] \left[\begin{array}{c} \epsilon \end{array} \end{array}] \left[\begin{array}{c} \epsilon \end{array} \end{array}] \left[\begin{array}{c} \epsilon \end{array} \\] \left[\begin{array}{c} \epsilon \end{array} \end{array}] \left[\begin{array}{c} \epsilon \end{array} \\] \left[\begin{array}{c} \epsilon \end{array} \end{array}] \left[\begin{array}{c} \epsilon \end{array} \\] \left[\end{array} \\] \left[\begin{array}{c} \epsilon \end{array} \end{array}] \left[\begin{array}{c} \epsilon \end{array} \\] \left[\begin{array}{c} \epsilon \end{array} \\] \left[\end{array} \end{array}] \left[\begin{array}{c} \epsilon \end{array} \\] \left[\end{array} \\] \left[\end{array}] \left[\begin{array}{c} \epsilon \end{array} \\] \left[\end{array} \\] \left[\end{array}] \left[\end{array} \\] \left[\end{array} \\] \left[\end{array} \\] \left[\end{array}] \left[$$

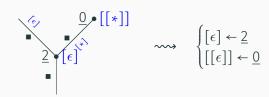
Reminder + convention

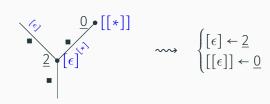
$$\underline{0} = \mathbf{A} = \{ \mathbf{A} \in \mathbf{A} \}$$

Reminder + convention

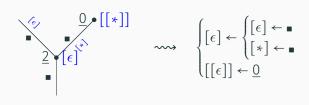
$$\underline{0} = \blacklozenge$$
 = {{



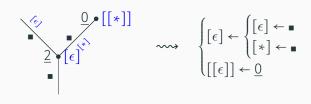




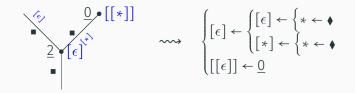
$$\underline{2} = \left\{ \begin{array}{c} \ast \\ \epsilon \end{array} \right\} = \left\{ \begin{array}{c} [\epsilon] \leftarrow \bullet \\ [\epsilon] \leftarrow \bullet \\ [\star] \leftarrow \bullet \end{array} \right\}$$

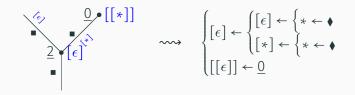


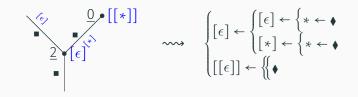
$$\underline{2} = \left\{ \begin{array}{c} \ast \\ \ast \\ \ast \\ \ast \\ \epsilon \end{array} \right\} = \left\{ \begin{array}{c} \left[\epsilon\right] \leftarrow \bullet \\ \left[\epsilon\right] \\ \ast \\ \epsilon \end{array} \right\} \\ \left[\epsilon\right] \leftarrow \bullet \end{array} \right\}$$

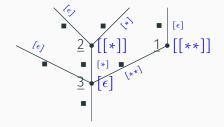


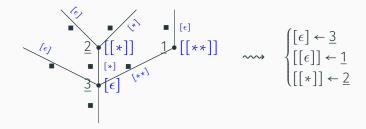


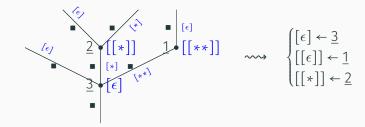




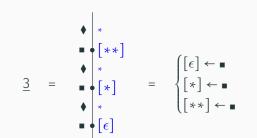




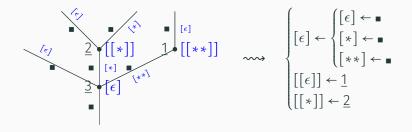




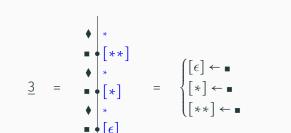
Reminder



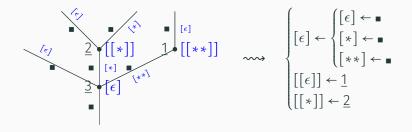
29



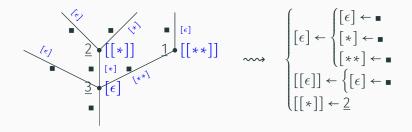
Reminder



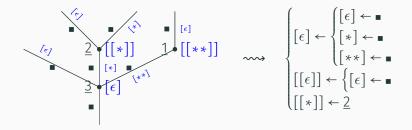
29

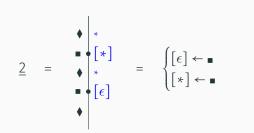


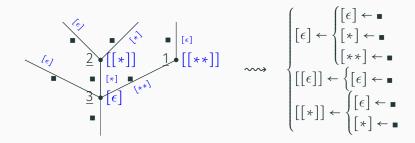
$$\underline{1} = \left. \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right|_{\epsilon}^{*} = \left\{ \left[\epsilon \right] \leftarrow \bullet \right\}$$

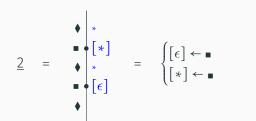


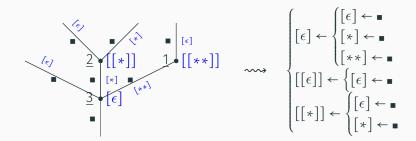
$$\underline{1} = \left. \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right|_{\epsilon}^{*} = \left\{ \left[\epsilon \right] \leftarrow \bullet \right\}$$





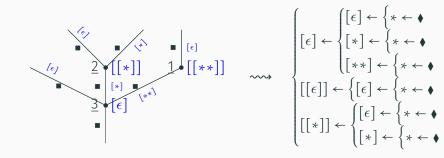






Reminder

■ = {* ← ♦



Reminder

 $\bullet \rightarrow *$

Question Is this an opetope?

$$\begin{cases} [\epsilon] \leftarrow \begin{cases} [*] \leftarrow \bullet \\ [**] \leftarrow \bullet \\ [**] \leftarrow \bullet \\ [**] \leftarrow \bullet \\ [**] \leftarrow & \\ [\epsilon] \leftarrow & \\ [**] \leftarrow \bullet \\ [**] \leftarrow \bullet \\ [[\epsilon]] \leftarrow & \\ [\epsilon] \leftarrow$$

System Opt?

The set of preopetopes \mathbb{P} is defined by the following grammar:

$$\mathbb{P} ::= \blacklozenge$$

$$| \qquad \begin{cases} \mathbb{A} \leftarrow \mathbb{P} \\ \vdots \\ \mathbb{A} \leftarrow \mathbb{P} \\ | \qquad \end{cases}$$

$$| \qquad \{ \mathbb{P} \}$$

The set of preopetopes ${\mathbb P}$ is defined by the following grammar:

$$\mathbb{P} ::= \blacklozenge$$

$$\left\{ \begin{array}{c} \mathbb{A} \leftarrow \mathbb{P} \\ \mathbb{I} \\ \mathbb{A} \leftarrow \mathbb{P} \\ \mathbb{I} \\ \mathbb{I} \end{array} \right\}$$

The **Opt**? system aims to characterize preopetopes that actually are opetopes:

Theorem

Derivable preopetopes in system **Opt**[?] are in bijective correspondence with opetopes.

The first rule of **Opt**[?] states that we may create points without any prior assumption:

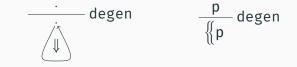
—___ point

The first rule of **Opt**[?] states that we may create points without any prior assumption:

This rule takes an opetope and produces a degenerate opetope from it:

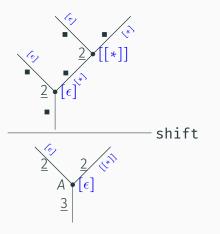
- degen

This rule takes an opetope and produces a degenerate opetope from it:



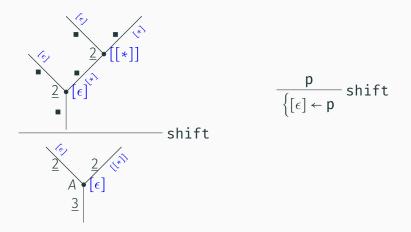
System Opt?: the shift rule

This rule takes an opetope **p** and produces a new opetope having a unique node, decorated in **p**:



System Opt?: the shift rule

This rule takes an opetope **p** and produces a new opetope having a unique node, decorated in **p**:



System Opt[?]: the graft rule

This rule glues an *n*-opetope \mathbf{q} to an (n + 1)-opetope \mathbf{p} , the latter really just being a pasting diagram of *n*-opetopes:

This rule glues an *n*-opetope \mathbf{q} to an (n + 1)-opetope \mathbf{p} , the latter really just being a pasting diagram of *n*-opetopes:

$$\underbrace{\xrightarrow{i}}_{i} \xrightarrow{i} \xrightarrow{i} \xrightarrow{i}_{i}}_{j} graft-[b] \xrightarrow{\begin{cases} [a_{1}] \leftarrow r_{1} \\ \vdots & q \\ [a_{k}] \leftarrow r_{k} \\ \vdots \\ [a_{k}] \leftarrow r_{1} \\ \vdots \\ [a_{k}] \leftarrow r_{k} \\ [b] \leftarrow q \\ \end{cases}} graft-[b]$$

(we omitted some technical assumptions that ensure this operation is geometrically meaningful)

The proof tree of

The proof tree of

is:

 $\frac{- \mathbf{e} \operatorname{point}}{\{[\epsilon] \leftarrow \mathbf{e} \}}$ shift

 $\cdot \longrightarrow \cdot$

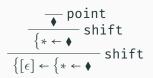
The proof tree of

is:

$$\frac{}{} \begin{array}{c} \bullet \\ \bullet \\ \hline \\ \hline \\ {* \leftarrow \bullet} \end{array}$$
shift

 $\cdot \longrightarrow \cdot$

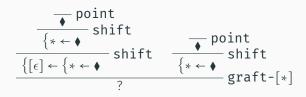
The proof tree of



The proof tree of

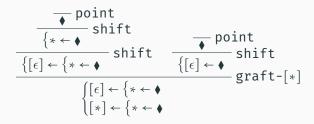
$$\frac{\overbrace{\{\ast \leftarrow \phi } \text{shift}}{\{\epsilon \in \{\ast \leftarrow \phi } \text{shift}} \\
\frac{}{\left\{ [\epsilon] \leftarrow \{\ast \leftarrow \phi } \text{shift} \\
\frac{}{?} \\
\end{array} graft-[*] \\$$

The proof tree of



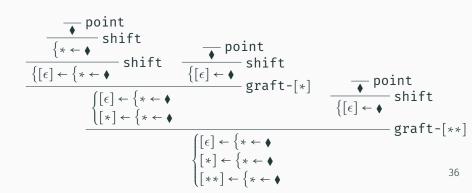
is:

The proof tree of

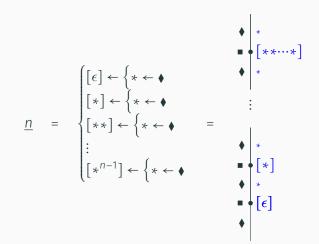


36

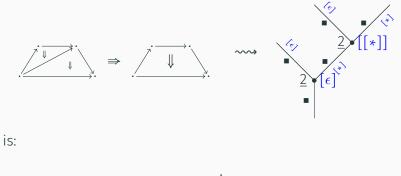
The proof tree of



Write

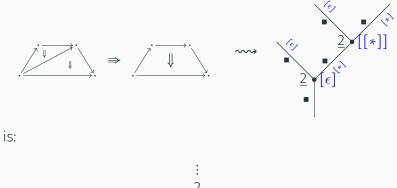


The proof tree of



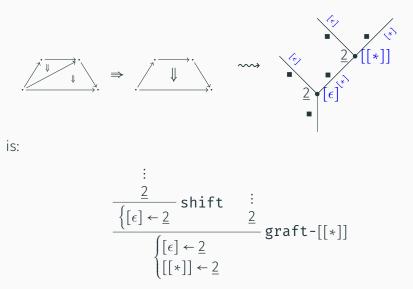
: 2

The proof tree of



$$\frac{\frac{2}{2}}{\left\{ \left[\epsilon \right] \leftarrow \underline{2} \right]} \text{ shift }$$

The proof tree of



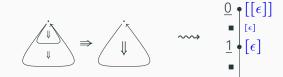
The proof tree of



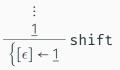
 \longrightarrow

: 1

The proof tree of

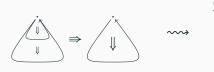


is



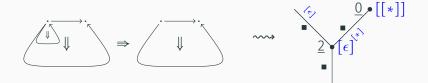
39

The proof tree of

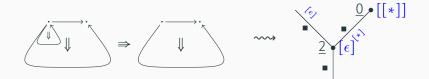


$$\frac{\underline{1}}{\frac{\left[\epsilon\right] \leftarrow \underline{1}}{\left[\epsilon\right] \leftarrow \underline{1}}} \operatorname{shift} \quad \underline{\underline{0}}} \operatorname{graft-} \left[\left[\epsilon\right]\right]} \frac{\left[\epsilon\right] \leftarrow \underline{1}}{\left[\left[\epsilon\right]\right] \leftarrow \underline{0}}$$

The proof tree of

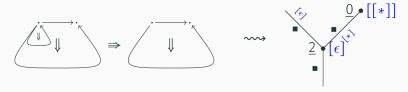


The proof tree of

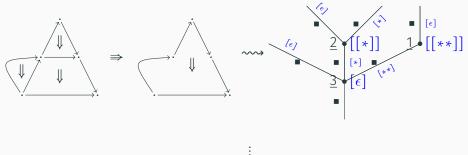


$$\frac{\frac{2}{2}}{\left\{ \left[\epsilon \right] \leftarrow \underline{2} \right\}} \text{ shift }$$

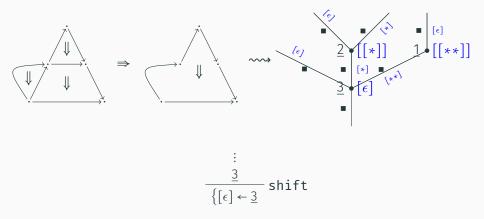
The proof tree of



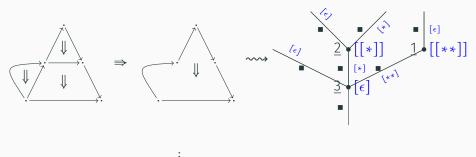
$$\frac{\underline{2}}{\left\{\left[\epsilon\right]\leftarrow\underline{2}\right]} \text{ shift } \vdots \\
\underline{\left\{\left[\epsilon\right]\leftarrow\underline{2}\right\}} \\
\frac{\left[\left[\epsilon\right]\leftarrow\underline{2}\right]}{\left\{\left[\left[*\right]\right]\leftarrow\underline{0}\right\}} \text{ graft-}\left[\left[*\right]\right]$$



: <u>3</u>

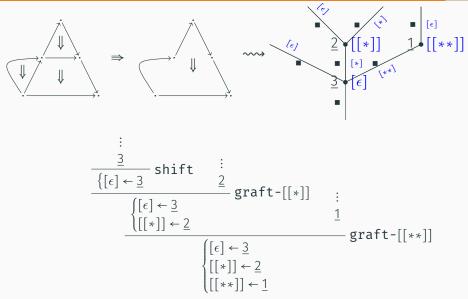


41



$$\frac{3}{\left\{\left[\epsilon\right]\leftarrow\underline{3}\right\}} \text{ shift } \frac{1}{2} \text{ graft-}[[*]] \\ \left\{\begin{array}{c} \left[\epsilon\right]\leftarrow\underline{3}\\ \left[\left[*\right]\right]\leftarrow\underline{2} \end{array}\right\}$$

41



- In this presentation, we gave two ways to define opetopes syntactically:
 - 1. in a "named" way, using terms and system **Opt**[!];
 - 2. in an "unnamed" way, using preopetopes and system **Opt**?;

- In this presentation, we gave two ways to define opetopes syntactically:
 - 1. in a "named" way, using terms and system **Opt**[!];
 - 2. in an "unnamed" way, using preopetopes and system Opt?;
- The various constructs and algorithms can be easily[™] implemented, and opetopes amount to valid proof trees. An example implementation in Python 3 is available at [Ho 18], where valid proof trees are represented by certain expressions that evaluate without throwing any exception.

- In this presentation, we gave two ways to define opetopes syntactically:
 - 1. in a "named" way, using terms and system **Opt**[!];
 - 2. in an "unnamed" way, using preopetopes and system Opt?;
- The various constructs and algorithms can be easily[™] implemented, and opetopes amount to valid proof trees. An example implementation in Python 3 is available at [Ho 18], where valid proof trees are represented by certain expressions that evaluate without throwing any exception.
- In [CHM18] (see link on the first slide for a draft), we also present variants of those systems for opetopic sets.

- In this presentation, we gave two ways to define opetopes syntactically:
 - 1. in a "named" way, using terms and system **Opt**[!];
 - 2. in an "unnamed" way, using preopetopes and system **Opt**[?];
- The various constructs and algorithms can be easily[™] implemented, and opetopes amount to valid proof trees. An example implementation in Python 3 is available at [Ho 18], where valid proof trees are represented by certain expressions that evaluate without throwing any exception.
- In [CHM18] (see link on the first slide for a draft), we also present variants of those systems for opetopic sets.
- We are experimenting with those new tools to automatically check coherence laws for an appropriate definition of opetopic ω-groupoid.

Thank you for your attention!

References i

John C. Baez and James Dolan.
 Higher-dimensional algebra. III. n-categories and the algebra of opetopes.
 Advances in Mathematics, 135(2):145–206, 1998.

Pierre-Louis Curien, Cédric Ho Thanh, and Samuel Mimram.

Type theoretical approaches for opetopes. In preparation, 2018.

🔋 Cédric Ho Thanh.

opetopy.

https://github.com/altaris/opetopy, April 2018.

 Joachim Kock, André Joyal, Michael Batanin, and Jean-François Mascari.
 Polynomial functors and opetopes. Advances in Mathematics, 224(6):2690–2737, 2010.
 Tom Leinster.

Higher Operads, Higher Categories. Cambridge University Press, 2004.