

The equivalence between many-to-one polygraphs and opetopic sets

Cédric Ho Thanh¹ July 7th, 2018

¹IRIF, Paris Diderot University, INSPIRE 2017 Fellow, This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 665850 This short talk informally presents the main notions and results of [HT, 2018] (arXiv:1806.08645 [math.CT]).

Contents

- 1. Polygraphs
- 2. Opetopes
- 3. Main result and ideas of how to prove it
- 4. Conclusion

Polygraphs

Given a graph

$$G = \left(G_0 \stackrel{\mathrm{s},\mathrm{t}}{\longleftarrow} G_1\right),$$

one can generate the *free category* G^* :

Objects vertices of G; Generating morphisms edges of G; Relations none. Given a graph

$$G = \left(G_0 \stackrel{\mathrm{s},\mathrm{t}}{\longleftarrow} G_1\right),$$

one can generate the *free category* G^* :

Objects vertices of G; Generating morphisms edges of G; Relations none.

In the same way, an *n*-polygraph (also called *n*-computad) generates a free (strict) *n*-category, for $n \le \omega$.

A 0-polygraph P is a set. It generates a 0-category (aka a set) $P^* = P$.

A 0-polygraph P is a set. It generates a 0-category (aka a set) $P^* = P$.

A 1-polygraph P is a graph

$$P = \left(P_0 \stackrel{s,t}{\longleftarrow} P_1\right).$$

It generates a 1-category P^* which is the free category on P.

An (n + 1)-polygraph P is the data of an n-polygraph Q, a set P_{n+1} , and two maps

$$Q_n^* \xleftarrow{s,t} P_{n+1}$$

such that the globular identities hold: for $p \in P_{n+1}$

$$ssp = stp, tsp = ttp.$$

The (n + 1)-category P^* is defined as follows:

- its underlying *n*-category is Q^{*} (i.e. the *n*-category generated by the underlying *n*-polygraph Q of P), so that P^{*}_k = Q^{*}_k for k ≤ n;
- 2. its (n + 1)-cells are the formal composites of elements of P_{n+1} according to $Q_n^* \xleftarrow{s,t} P_{n+1}$, as well as identities of cells of Q^* .

Thus the (n + 1)-polygraph P can be depicted as follows:

The maps s are called *source maps*, and t *target maps*. Elements of P_k are called *k-generators*, while elements of P_k^* are called *k-cells*. The bottom row is exactly the underlying globular set of P^* . A ω -polygraph (or simply polygraph) P is a sequence $(P_{(n)} \mid n < \omega)$ such that $P_{(n)}$ is an n-polygraph that is the underlying n-polygraph of $P_{(n+1)}$.

A ω -polygraph (or simply polygraph) P is a sequence $(P_{(n)} | n < \omega)$ such that $P_{(n)}$ is an n-polygraph that is the underlying n-polygraph of $P_{(n+1)}$.

The underlying ω -category P^* is defined as

$$P^* = \operatorname{colim}\left(P^*_{(0)} \hookrightarrow P^*_{(1)} \hookrightarrow \cdots\right).$$

A morphism of polygraphs $f: P \longrightarrow R$ is an ω -functor $P^* \longrightarrow R^*$ mapping generators to generators. Let \mathcal{P} ol be the category of polygraphs and such morphisms, and \mathcal{P} ol_n be the full subcategory of \mathcal{P} ol spanned by *n*-polygraphs.

The categories $\mathcal{P}\mathrm{ol}_0,\,\mathcal{P}\mathrm{ol}_1,\,\text{and}\,\,\mathcal{P}\mathrm{ol}_2$ are presheaf categories.

The categories $\mathcal{P}ol_0$, $\mathcal{P}ol_1$, and $\mathcal{P}ol_2$ are presheaf categories.

Proposition [Cheng, 2013]

The category $\mathcal{P}ol_3$ is not. Thus $\mathcal{P}ol_n$ for $n \ge 3$, and $\mathcal{P}ol$ aren't presheaf categories either.

The categories $\mathcal{P}\mathrm{ol}_0$, $\mathcal{P}\mathrm{ol}_1$, and $\mathcal{P}\mathrm{ol}_2$ are presheaf categories.

Proposition [Cheng, 2013]

The category $\mathcal{P}ol_3$ is not. Thus $\mathcal{P}ol_n$ for $n \ge 3$, and $\mathcal{P}ol$ aren't presheaf categories either.

Question

Which subcategories of $\mathcal{P}ol$ are presheaf categories?

The categories $\mathcal{P}\mathrm{ol}_0$, $\mathcal{P}\mathrm{ol}_1$, and $\mathcal{P}\mathrm{ol}_2$ are presheaf categories.

Proposition [Cheng, 2013]

The category $\mathcal{P}ol_3$ is not. Thus $\mathcal{P}ol_n$ for $n \ge 3$, and $\mathcal{P}ol$ aren't presheaf categories either.

Question

Which subcategories of $\mathcal{P}ol$ are presheaf categories?

Answer (sort of)

A fair amount. See [Henry, 2017].

Many-to-one polygraphs

Today we will focus on the subcategory of *many-to-one* polygraphs $\mathcal{P}ol^{\nabla}$.

Many-to-one polygraphs

Today we will focus on the subcategory of *many-to-one* polygraphs $\mathcal{P}ol^{\nabla}$.

A polygraph P is many-to-one if for all generator $p \in P_n$ with $n \ge 1$, we have $t p \in P_{n-1}$ (as opposed to just P_{n-1}^*).

Many-to-one polygraphs

Today we will focus on the subcategory of *many-to-one* polygraphs $\mathcal{P}ol^{\nabla}$.

A polygraph P is many-to-one if for all generator $p \in P_n$ with $n \ge 1$, we have $t p \in P_{n-1}$ (as opposed to just P_{n-1}^*).

Teaser

The category $\mathcal{P}ol^{\nabla}$ is a presheaf category.

Opetopes

Opetopes were originally introduced by Baez and Dolan in [Baez and Dolan, 1998] as an algebraic structure to describe compositions and coherence laws in weak higher dimensional categories. Opetopes were originally introduced by Baez and Dolan in [Baez and Dolan, 1998] as an algebraic structure to describe compositions and coherence laws in weak higher dimensional categories.

They have been reworked in [Kock et al., 2010] to arrive at the following moto:

"An n-opetope is a tree whose nodes are (n - 1)-opetopes, and whose edges are (n - 2)-opetopes."

Here is how it goes graphically:

Here is how it goes graphically:

- there is a unique 0-opetope, the point, drawn as

٠

Here is how it goes graphically:

- there is a unique 0-opetope, the point, drawn as

- there is a unique 1-opetope, the arrow, drawn as

notice how both ends of the arrow are points (i.e. 0-opetopes);

 $\cdot \longrightarrow \cdot$

- a 2-opetope is a shape of the form:

where the top part (*source*) is any arrangement (or pasting scheme) of 1-opetopes glued along 0-opetopes, and where the bottom part (*target*) consists in **only one** 1-opetope.

- a 2-opetope is a shape of the form:

where the top part (*source*) is any arrangement (or pasting scheme) of 1-opetopes glued along 0-opetopes, and where the bottom part (*target*) consists in **only one** 1-opetope.

Other examples of 2-opetopes include

- a 3-opetope is a shape of the form:

where the left part (*source*) is any pasting scheme of 2-opetopes glued along 1-opetopes, and where the right part (*target*) consists in **only one** 2-opetope **parallel to the overall boundary of the source**.

Definition (sketch)

- and so on: an *n*-opetope (for $n \ge 2$) is a source pasting scheme of (n - 1)-opetopes glued along (n - 2)-opetopes, together with a *target* parallel (n - 1)-opetope.

Definition (sketch)

and so on: an *n*-opetope (for n ≥ 2) is a source pasting scheme of (n – 1)-opetopes glued along (n – 2)-opetopes, together with a *target* parallel (n – 1)-opetope.
Here is an example of 4-opetope [Cheng and Lauda, 2004]:

The category of opetopes

There is a very graphical idea of "face of an opetope":

Objects opetopes;

Objects opetopes; Morphisms face embeddings;

Objects opetopes;

Morphisms face embeddings;

together with 4 relations that implement the geometrical intuition.
Relation [Inner]

The purple 1-face embeds as both the target of the blue 2-face, and a source of the red 2-face. Thus both ways of embedding that 1-face into the whole 3-opetope should be the same.

The category of opetopes

The category of opetopes

Relation [Glob1]

The bottom 1-face of the source and the bottom 1-face of the target are geometrically the same, and thus the relevant embeddings should be equal.

The category of opetopes

Relation [Glob1]

The bottom 1-face of the source and the bottom 1-face of the target are geometrically the same, and thus the relevant embeddings should be equal.

Relation [Glob2]

Likewise, a 1-face in the source of the source is the same as some 1-face in the source of the target, and thus the relevant embeddings should be equal.

Relation [Degen]

In this 2-opetope, the source doesn't contain any 1-face, so that the target is "glued on both ends". The source and the target of the target 1-face are geometrically the same, and thus the relevant embeddings should be equal. Main result

Write $\hat{\mathbb{O}} = [\mathbb{O}^{\text{op}}, Set]$ for the category of *S*et-valued presheaves over \mathbb{O} , aka *opetopic sets*.

Write $\hat{\mathbb{O}} = [\mathbb{O}^{\mathrm{op}}, \mathcal{S}et]$ for the category of $\mathcal{S}et$ -valued presheaves over \mathbb{O} , aka *opetopic sets*.

Theorem [HT, 2018]

There is an equivalence of categories $\mathcal{P}ol^{\nabla} \simeq \hat{\mathbb{O}}$.

In an opetopic set Cells are opetopic shapes with labeled faces

$$a \xrightarrow{b \xrightarrow{g} c} a \xrightarrow{f \xrightarrow{f} \ \downarrow \alpha} a \xrightarrow{h} d$$

In an opetopic set Cells are opetopic shapes with labeled faces

$$a \xrightarrow{f \xrightarrow{g} C} a \xrightarrow{f \xrightarrow{g} c} d$$

In a many-to-one polygraph Generators are many-to-one, i.e. their source are compositions of (many-to-one) generators, while their target consists in a unique generator:

$$\alpha$$
: hgf \longrightarrow i.

An opetopic set should induce a many-to-one polygraph whose generators are cells.

An opetopic set should induce a many-to-one polygraph whose generators are cells.

A many-to-one polygraph should induce an opetopic set whose cells are generators.

We construct a Kan "realization–nerve" adjunction, and prove that it is an equivalence:

$$\mathcal{O}[-]:\mathbb{O}\longrightarrow \mathcal{P}ol^{\nabla}$$

is tricky to construct formally

$$\mathcal{O}[-]: \mathbb{O} \longrightarrow \mathcal{P}ol^{\nabla}$$

is tricky to construct formally, but the intuition is simple. Given an opetope $\boldsymbol{\omega}$

create a polygraph $O[\omega]$ whose k-generators are the k-faces of ω :

$$O[\omega]_k = \mathbb{O}_k / \omega.$$

Properties

- By the very nature of opetopes, $O[\omega]$ is many-to-one.

Properties

- By the very nature of opetopes, $O[\omega]$ is many-to-one.
- If $\omega \in \mathbb{O}_n$, then $O[\omega]$ is an *n*-polygraph that has a unique *n*-generator.

Properties

- By the very nature of opetopes, $O[\omega]$ is many-to-one.
- If $\omega \in \mathbb{O}_n$, then $O[\omega]$ is an *n*-polygraph that has a unique *n*-generator.
- For $y\omega \in \hat{\mathbb{O}}$ the representable at ω , we have

$$y\omega_k = \bigsqcup_{\psi \in \mathbb{O}_k} y\omega_{\psi} = O[\omega]_k.$$

Properties

- By the very nature of opetopes, $O[\omega]$ is many-to-one.
- If $\omega \in \mathbb{O}_n$, then $O[\omega]$ is an *n*-polygraph that has a unique *n*-generator.
- For $y\omega \in \hat{\mathbb{O}}$ the representable at ω , we have

$$y\omega_k = \bigsqcup_{\psi \in \mathbb{O}_k} y\omega_{\psi} = O[\omega]_k.$$

- Really, $O[\omega]$ is $y\omega$ with added formal composites of faces of ω .

Polygraphic realization

The left Kan extension of O[-] along y is given by

$$|-| = \operatorname{Lan}_{y} O[-] : \widehat{\mathbb{O}} \longrightarrow \mathcal{P}ol^{\nabla}$$
$$X \longmapsto \operatorname{colim}\left(y/X \longrightarrow \mathbb{O} \xrightarrow{O[-]} \mathcal{P}ol^{\nabla}\right).$$

Polygraphic realization

The left Kan extension of O[-] along y is given by

$$|-| = \operatorname{Lan}_{y} O[-] : \widehat{\mathbb{O}} \longrightarrow \mathcal{P}ol^{\nabla}$$
$$X \longmapsto \operatorname{colim}\left(y/X \longrightarrow \mathbb{O} \xrightarrow{O[-]} \mathcal{P}ol^{\nabla}\right).$$

From an opetopic set X, it creates a many-to-one polygraph |X| whose *n*-generators are the *n*-cells of X, i.e.

$$|X|_n = \bigsqcup_{\omega \in \mathbb{O}_n} X_\omega.$$

Polygraphic realization

The left Kan extension of O[-] along y is given by

$$|-| = \operatorname{Lan}_{y} O[-] : \widehat{\mathbb{O}} \longrightarrow \mathcal{P}ol^{\nabla}$$
$$X \longmapsto \operatorname{colim}\left(y/X \longrightarrow \mathbb{O} \xrightarrow{O[-]} \mathcal{P}ol^{\nabla}\right).$$

From an opetopic set *X*, it creates a many-to-one polygraph |*X*| whose *n*-generators are the *n*-cells of *X*, i.e.

$$|X|_n = \bigsqcup_{\omega \in \mathbb{O}_n} X_\omega.$$

Recall our objective:

"An opetopic set should induce a many-to-one polygraph whose generators are cells."

The right adjoint to |-| is given by

$$N: \mathcal{P}ol^{\nabla} \longmapsto \hat{\mathbb{O}}$$
$$P \longmapsto \mathcal{P}ol^{\nabla}(\mathcal{O}[-], P)$$

Opetopic nerve

Example If $\alpha \in P_2, \alpha : hgf \longrightarrow i$

Opetopic nerve

Example If $\alpha \in P_2, \alpha : hgf \longrightarrow i$

then the shape of α is

so that there is a cell $\alpha \in NP_{\omega}$, for $\omega = \alpha^{\natural}$ the opetope above. Moto: the shape function $(-)^{\natural}$ "removes labels". Theorem ("Yoneda lemma")

For $P \in \mathcal{P}ol^{\nabla}$ and $x \in P_n$ a generator, there exist a unique pair $\omega \in \mathbb{O}$ and $f: O[\omega] \longrightarrow P$ such that $f(\omega) = x$. Moreover, $\omega = x^{\natural}$.

Theorem ("Yoneda lemma")

For $P \in \mathcal{P}ol^{\nabla}$ and $x \in P_n$ a generator, there exist a unique pair $\omega \in \mathbb{O}$ and $f: O[\omega] \longrightarrow P$ such that $f(\omega) = x$. Moreover, $\omega = x^{\natural}$.

For $\omega \in \mathbb{O}_n$, elements of NP_ω are *n*-generators of *P* of shape ω , and

$$P_n = \bigsqcup_{\omega \in \mathbb{O}_n} NP_\omega.$$

Theorem ("Yoneda lemma")

For $P \in \mathcal{P}ol^{\nabla}$ and $x \in P_n$ a generator, there exist a unique pair $\omega \in \mathbb{O}$ and $f: O[\omega] \longrightarrow P$ such that $f(\omega) = x$. Moreover, $\omega = x^{\natural}$.

For $\omega \in \mathbb{O}_n$, elements of NP_ω are *n*-generators of *P* of shape ω , and

$$P_n = \bigsqcup_{\omega \in \mathbb{O}_n} NP_\omega.$$

Recall our objective:

"A many-to-one polygraph should induce an opetopic set whose cells are generators."

Corollary (Main result)

The counit $\varepsilon : |NP| \longrightarrow P$ is a natural isomorphism. After a little more work, we show that $|-| \dashv N$ is an adjoint equivalence of categories.

Corollary (Main result)

The counit $\varepsilon : |NP| \longrightarrow P$ is a natural isomorphism. After a little more work, we show that $|-| \dashv N$ is an adjoint equivalence of categories.

Corollary (An open question of [Henry, 2017])

For 1 the terminal object of $\mathcal{P}ol^{\nabla}$, the shape function gives a bijection $(-)^{\natural} : \mathfrak{l}_n \longrightarrow \mathbb{O}_n$. Thus opetopes are generators of the terminal many-to-one polygraph.

 We proved that the category of many-to-one polygraphs *P*ol[∇] is a presheaf category, and displayed opetopes (in the sense of [Leinster, 2004] and [Kock et al., 2010]) as the adequate shapes.

- We proved that the category of many-to-one polygraphs *P*ol[∇] is a presheaf category, and displayed opetopes (in the sense of [Leinster, 2004] and [Kock et al., 2010]) as the adequate shapes.
- The main idea was to consider opetopes as describing compositions of lower dimensional opetopes.

- We proved that the category of many-to-one polygraphs *P*ol[∇] is a presheaf category, and displayed opetopes (in the sense of [Leinster, 2004] and [Kock et al., 2010]) as the adequate shapes.
- The main idea was to consider opetopes as describing compositions of lower dimensional opetopes.

 However, the precise formulations and proofs require the theory of polynomial functors and trees
[Gambino and Kock, 2013, Kock, 2011, Kock et al., 2010].

Thank you for your attention!

Baez, J. C. and Dolan, J. (1998).

Higher-dimensional algebra. III. *n*-categories and the algebra of opetopes.

Advances in Mathematics, 135(2):145–206.

Cheng, E. (2013).

A direct proof that the category of 3-computads is not Cartesian closed.

Cahiers de Topologie et Géométrie Différentielle Catégoriques, 54(1):3–12.
References ii

Cheng, E. and Lauda, A. (2004).
 Higher-dimensional categories: an illustrated guide book.

Available at http://cheng.staff.shef.ac.uk/guidebook/index.html.

- Gambino, N. and Kock, J. (2013).
 Polynomial functors and polynomial monads.
 Mathematical Proceedings of the Cambridge Philosophical Society, 154(1):153–192.
- Henry, S. (2017).

Non-unital polygraphs form a presheaf categories. arXiv:1711.00744 [math.CT].

References iii

📔 Ho Thanh, C. (2018).

The equivalence between opetopic sets and many-to-one polygraphs.

arXiv:1806.08645 [math.CT].

Kock, J. (2011).

Polynomial functors and trees.

International Mathematics Research Notices, 2011(3):609–673.

Kock, J., Joyal, A., Batanin, M., and Mascari, J.-F. (2010). Polynomial functors and opetopes.

Advances in Mathematics, 224(6):2690–2737.

Leinster, T. (2004). *Higher Operads, Higher Categories.* Cambridge University Press.