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This short talk informally presents the main notions and
results of [HT, 2018] (arXiv:1806.08645 [math.CT]).
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Polygraphs



Idea

Given a graph
G = (G0

s,t
←−− G1) ,

one can generate the free category G∗:

Objects vertices of G;
Generating morphisms edges of G;
Relations none.

In the same way, an n-polygraph (also called n-computad)
generates a free (strict) n-category, for n ≤ ω.
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Definition

A 0-polygraph P is a set. It generates a 0-category (aka a set)
P∗ = P.

A 1-polygraph P is a graph

P = (P0 s,t
←−− P1) .

It generates a 1-category P∗ which is the free category on P.
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Definition

An (n + 1)-polygraph P is the data of an n-polygraph Q, a set
Pn+1, and two maps

Q∗
n

s,t
←−− Pn+1

such that the globular identities hold: for p ∈ Pn+1

s sp = s tp, t sp = t tp.

⋅ ⋅
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Definition

The (n + 1)-category P∗ is defined as follows:

1. its underlying n-category is Q∗ (i.e. the n-category
generated by the underlying n-polygraph Q of P), so that
P∗k = Q∗

k for k ≤ n;
2. its (n + 1)-cells are the formal composites of elements of

Pn+1 according to Q∗
n

s,t
←−− Pn+1, as well as identities of cells

of Q∗.
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Definition

Thus the (n + 1)-polygraph P can be depicted as follows:

P0 P1 P2 ⋯ Pn Pn+1

P∗0 P∗1 P∗2 ⋯ P∗n P∗n+1

s , t s , t s , t s , t s , t

s , t s , t s , t s , t s , t

The maps s are called source maps, and t target maps.
Elements of Pk are called k-generators, while elements of P∗k
are called k-cells. The bottom row is exactly the underlying
globular set of P∗.
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Definition

A ω-polygraph (or simply polygraph) P is a sequence(P(n) ∣ n < ω) such that P(n) is an n-polygraph that is the
underlying n-polygraph of P(n+1).

P0 P1 P2 ⋯ Pn ⋯

P∗0 P∗1 P∗2 ⋯ P∗n ⋯

s , t s , t s , t s , t s , t

s , t s , t s , t s , t s , t

The underlying ω-category P∗ is defined as

P∗ = colim (P∗(0) ↪ P∗(1) ↪ ⋯) .
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Definition

A morphism of polygraphs f ∶ P ⟶ R is an ω-functor
P∗ ⟶ R∗ mapping generators to generators. Let Pol be the
category of polygraphs and such morphisms, and Poln be the
full subcategory of Pol spanned by n-polygraphs.
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Proposition
The categories Pol0, Pol1, and Pol2 are presheaf categories.

Proposition [Cheng, 2013]
The category Pol3 is not. Thus Poln for n ≥ 3, and Pol aren’t
presheaf categories either.

Question
Which subcategories of Pol are presheaf categories?

Answer (sort of)
A fair amount. See [Henry, 2017].
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Many-to-one polygraphs

Today we will focus on the subcategory of many-to-one
polygraphs Pol▽.

A polygraph P is many-to-one if for all generator p ∈ Pn with
n ≥ 1, we have tp ∈ Pn−1 (as opposed to just P∗n−1).

P0 P1 P2 ⋯ Pn ⋯

P∗0 P∗1 P∗2 ⋯ P∗n ⋯

s

t

s

t

s

t

s

t

s

t

s , t s , t s , t s , t s , t

Teaser
The category Pol▽ is a presheaf category.
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Opetopes



Idea

Opetopes were originally introduced by Baez and Dolan in
[Baez and Dolan, 1998] as an algebraic structure to describe
compositions and coherence laws in weak higher dimensional
categories.

They have been reworked in [Kock et al., 2010] to arrive at the
following moto:

“An n-opetope is a tree whose nodes are(n − 1)-opetopes, and whose edges are(n − 2)-opetopes.”
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Definition (sketch)

Here is how it goes graphically:

- there is a unique 0-opetope, the point, drawn as

.

- there is a unique 1-opetope, the arrow, drawn as

. .

notice how both ends of the arrow are points (i.e.
0-opetopes);
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Definition (sketch)

- a 2-opetope is a shape of the form:

.

. .

.
⇓

where the top part (source) is any arrangement (or pasting
scheme) of 1-opetopes glued along 0-opetopes, and
where the bottom part (target) consists in only one
1-opetope.

Other examples of 2-opetopes include

. .
⇓

.

⇓
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Definition (sketch)

- a 3-opetope is a shape of the form:

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓

where the left part (source) is any pasting scheme of
2-opetopes glued along 1-opetopes, and where the right
part (target) consists in only one 2-opetope parallel to
the overall boundary of the source.
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Definition (sketch)

- and so on: an n-opetope (for n ≥ 2) is a source pasting
scheme of (n− 1)-opetopes glued along (n− 2)-opetopes,
together with a target parallel (n − 1)-opetope.

Here is an example of 4-opetope [Cheng and Lauda, 2004]:
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The category of opetopes

There is a very graphical idea of “face of an opetope”:

. .
⇓

⟶

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

. .

.

.

⇓ ⇓

⇓

⤋

.

. .

.

.

⇓

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⟵

.

. .

.

.

⇓
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The category of opetopes

The category O of opetopes is defined as follows:

Objects opetopes;
Morphisms face embeddings;

together with 4 relations that implement the geometrical
intuition.
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The category of opetopes

Relation [Inner]

.

..

.

.

.

⇓

⇓ ⇛
.

. .

.
⇓

The purple 1-face embeds as both the target of
the blue 2-face, and a source of the red 2-face.
Thus both ways of embedding that 1-face into the
whole 3-opetope should be the same.
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The category of opetopes

.

.

.

..
⇓

.

.

.
⇓

.

..

.

.

.

⇓

⇓ ⇛
.

. .

.

⇓
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The category of opetopes

Relation [Glob1]

.

. .

.

⇓

⇓ ⇛
.

. .

.
⇓

The bottom 1-face of the source and the bottom
1-face of the target are geometrically the same,
and thus the relevant embeddings should be
equal.

Relation [Glob2]

.

. .

.

⇓

⇓ ⇛
.

. .

.
⇓

Likewise, a 1-face in the source of the source is
the same as some 1-face in the source of the
target, and thus the relevant embeddings should
be equal.
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The category of opetopes

Relation [Degen]
•

⇓

In this 2-opetope, the source doesn’t contain any
1-face, so that the target is “glued on both ends”.
The source and the target of the target 1-face are
geometrically the same, and thus the relevant
embeddings should be equal.
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Main result



Statement of the main result

Write Ô = [Oop
,Set] for the category of Set-valued presheaves

over O, aka opetopic sets.

Theorem [HT, 2018]
There is an equivalence of categories Pol▽ ≃ Ô.
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Key insight

In an opetopic set Cells are opetopic shapes with labeled
faces

a

b c

d
f

g

h

i

⇓α

In a many-to-one polygraph Generators are many-to-one, i.e.
their source are compositions of (many-to-one)
generators, while their target consists in a unique
generator:

α ∶ hgf ⟶ i.
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Goal

An opetopic set should induce a many-to-one polygraph
whose generators are cells.

A many-to-one polygraph should induce an opetopic set
whose cells are generators.
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Plan of attack

We construct a Kan “realization–nerve” adjunction, and prove
that it is an equivalence:

O Pol▽

Ô

O[−]
y

N

∣−∣
⊥
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The opetal functor

The opetal functor

O[−] ∶ O ⟶ Pol▽

is tricky to construct formally

, but the intuition is simple. Given
an opetope ω

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓

create a polygraph O[ω] whose k-generators are the k-faces of
ω:

O[ω]k = Ok/ω.

27
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The opetal functor

Properties

- By the very nature of opetopes, O[ω] is many-to-one.

- If ω ∈ On, then O[ω] is an n-polygraph that has a unique
n-generator.

- For yω ∈ Ô the representable at ω, we have

yωk = ⨆
ψ∈Ok

yωψ = O[ω]k.
- Really, O[ω] is yω with added formal composites of faces
of ω.

28
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Polygraphic realization

The left Kan extension of O[−] along y is given by∣ − ∣ = Lany O[−] ∶ Ô ⟶ Pol▽

X ⟼ colim (y/X ⟶ O
O[−]
−−−→ Pol▽) .

From an opetopic set X, it creates a many-to-one polygraph ∣X∣
whose n-generators are the n-cells of X, i.e.∣X∣n = ⨆

ω∈On

Xω.

Recall our objective:

“An opetopic set should induce a many-to-one polygraph
whose generators are cells.”
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Opetopic nerve

The right adjoint to ∣ − ∣ is given by

N ∶ Pol▽ ⟼ Ô

P ⟼ Pol▽(O[−],P)

30



Opetopic nerve

Example
If α ∈ P2, α ∶ hgf ⟶ i

a

b c

d
f

g

h

i

⇓α

then the shape of α is

α
♮ =

.

. .

.
⇓

so that there is a cell α ∈ NPω , for ω = α
♮ the opetope above.

Moto: the shape function (−)♮ “removes labels”.
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Key result

Theorem (“Yoneda lemma”)
For P ∈ Pol▽ and x ∈ Pn a generator, there exist a unique pair
ω ∈ O and f ∶ O[ω] ⟶ P such that f(ω) = x. Moreover, ω = x♮.

For ω ∈ On, elements of NPω are n-generators of P of shape ω,
and

Pn = ⨆
ω∈On

NPω.

Recall our objective:

“A many-to-one polygraph should induce an opetopic set
whose cells are generators.”
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Main result

Corollary (Main result)
The counit ε ∶ ∣NP∣ ⟶ P is a natural isomorphism. After a
little more work, we show that ∣ − ∣ ⊣ N is an adjoint
equivalence of categories.

Corollary (An open question of [Henry, 2017])
For 1 the terminal object of Pol▽, the shape function gives a
bijection (−)♮ ∶ 1n ⟶ On. Thus opetopes are generators of
the terminal many-to-one polygraph.
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Conclusion



Conclusion

- We proved that the category of many-to-one polygraphs
Pol▽ is a presheaf category, and displayed opetopes (in
the sense of [Leinster, 2004] and [Kock et al., 2010]) as the
adequate shapes.

- The main idea was to consider opetopes as describing
compositions of lower dimensional opetopes.

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓

- However, the precise formulations and proofs require the
theory of polynomial functors and trees
[Gambino and Kock, 2013, Kock, 2011, Kock et al., 2010].
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Thank you for your
attention!
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