PARIS
 語DEROT

The equivalence between many-to-one polygraphs and opetopic sets

Cédric Ho Thanh ${ }^{1}$
July $7^{\text {th }}, 2018$
${ }^{1}$ IRIF, Paris Diderot University, INSPIRE 2017 Fellow, This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 665850

This short talk informally presents the main notions and results of [HT, 2018] (arXiv:1806.08645 [math.CT]).

Contents

1. Polygraphs
2. Opetopes
3. Main result and ideas of how to prove it
4. Conclusion

Polygraphs

Given a graph

$$
G=\left(G_{0} \stackrel{\mathrm{~s}, \mathrm{t}}{\leftrightarrows} G_{1}\right),
$$

one can generate the free category G^{*} :
Objects vertices of G;
Generating morphisms edges of G;
Relations none.

Idea

Given a graph

$$
G=\left(G_{0} \stackrel{\mathrm{~s}, \mathrm{t}}{\leftrightarrows} G_{1}\right),
$$

one can generate the free category G^{*} :
Objects vertices of G;
Generating morphisms edges of G;
Relations none.
In the same way, an n-polygraph (also called n-computad) generates a free (strict) n-category, for $n \leq \omega$.

Definition

A 0-polygraph P is a set. It generates a 0-category (aka a set) $P^{*}=P$.

Definition

A 0-polygraph P is a set. It generates a 0-category (aka a set) $P^{*}=P$.

A 1-polygraph P is a graph

$$
P=\left(P_{0} \stackrel{\mathrm{~s}, \mathrm{t}}{\leftrightarrows} P_{1}\right) .
$$

It generates a 1-category P^{*} which is the free category on P.

Definition

An $(n+1)$-polygraph P is the data of an n-polygraph Q, a set P_{n+1}, and two maps

$$
Q_{n}^{*} \stackrel{s, t}{\rightleftarrows} P_{n+1}
$$

such that the globular identities hold: for $p \in P_{n+1}$

$$
\mathrm{ssp}=\mathrm{st} p, \quad \mathrm{tsp}=\mathrm{tt} p .
$$

Definition

The $(n+1)$-category P^{*} is defined as follows:

1. its underlying n-category is Q^{*} (i.e. the n-category generated by the underlying n-polygraph Q of P), so that $P_{k}^{*}=Q_{k}^{*}$ for $k \leq n ;$
2. its $(n+1)$-cells are the formal composites of elements of P_{n+1} according to $Q_{n}^{*} \stackrel{\text { s,t }}{\leftrightarrows} P_{n+1}$, as well as identities of cells of Q^{*}.

Definition

Thus the $(n+1)$-polygraph P can be depicted as follows:

The maps s are called source maps, and t target maps. Elements of P_{k} are called k-generators, while elements of P_{k}^{*} are called k-cells. The bottom row is exactly the underlying globular set of P^{*}.

Definition

A ω-polygraph (or simply polygraph) P is a sequence $\left.P_{(n)} \mid n<\omega\right)$ such that $P_{(n)}$ is an n-polygraph that is the underlying n-polygraph of $P_{(n+1)}$.

Definition

A ω-polygraph (or simply polygraph) P is a sequence $\left.P_{(n)} \mid n<\omega\right)$ such that $P_{(n)}$ is an n-polygraph that is the underlying n-polygraph of $P_{(n+1)}$.

The underlying ω-category P^{*} is defined as

$$
P^{*}=\operatorname{colim}\left(P_{(0)}^{*} \hookrightarrow P_{(1)}^{*} \hookrightarrow \cdots\right) .
$$

Definition

A morphism of polygraphs $f: P \longrightarrow R$ is an ω-functor $P^{*} \longrightarrow R^{*}$ mapping generators to generators. Let \mathcal{P} ol be the category of polygraphs and such morphisms, and $\mathcal{P o l}_{n}$ be the full subcategory of \mathcal{P} ol spanned by n-polygraphs.

Proposition

The categories $\mathcal{P} \mathrm{P}_{0}, \mathcal{P}_{\mathrm{O}}^{1} 1$, and $\mathcal{P} \mathrm{P}_{2}$ are presheaf categories.

Proposition

The categories $\mathcal{P}_{\mathrm{ol}}^{0}, \mathcal{P}_{\mathrm{ol}}^{1}$, and $\mathcal{P}_{\mathrm{ol}}^{2}$ are presheaf categories.
Proposition [Cheng, 2013]
The category $\mathcal{P}_{\mathrm{ol}}^{3}$ is not. Thus $\mathcal{P}_{\mathrm{ol}}^{n}$ for $n \geq 3$, and \mathcal{P} ol aren't presheaf categories either.

Proposition

The categories $\mathcal{P}_{\mathrm{ol}}^{0}, \mathcal{P}_{\mathrm{Pol}}^{1}$, and $\mathcal{P}_{\mathrm{ol}}^{2}$ are presheaf categories.
Proposition [Cheng, 2013]
The category $\mathcal{P}_{\text {ol }}^{3}$ is not. Thus $\mathcal{P}_{\mathrm{ol}}^{n}$ for $n \geq 3$, and \mathcal{P} ol aren't presheaf categories either.

Question

Which subcategories of \mathcal{P} ol are presheaf categories?

Proposition

The categories $\mathcal{P}_{\mathrm{ol}}^{0}, \mathcal{P}_{\mathrm{Pol}}^{1}$, and $\mathcal{P}_{\mathrm{ol}}^{2}$ are presheaf categories.
Proposition [Cheng, 2013]
The category $\mathcal{P}_{\mathrm{ol}}^{3}$ is not. Thus $\mathcal{P}_{\mathrm{ol}}^{n}$ for $n \geq 3$, and \mathcal{P} ol aren't presheaf categories either.

Question
Which subcategories of \mathcal{P} ol are presheaf categories?
Answer (sort of)
A fair amount. See [Henry, 2017].

Many-to-one polygraphs

Today we will focus on the subcategory of many-to-one polygraphs \mathcal{P} ol ${ }^{\nabla}$.

Many-to-one polygraphs

Today we will focus on the subcategory of many-to-one polygraphs $\mathcal{P o l}^{\nabla}$.

A polygraph P is many-to-one if for all generator $p \in P_{n}$ with $n \geq 1$, we have $t p \in P_{n-1}$ (as opposed to just P_{n-1}^{*}).

Many-to-one polygraphs

Today we will focus on the subcategory of many-to-one polygraphs $\mathcal{P o l}^{\nabla}$.

A polygraph P is many-to-one if for all generator $p \in P_{n}$ with $n \geq 1$, we have t $p \in P_{n-1}$ (as opposed to just P_{n-1}^{*}).

Teaser

The category $\mathcal{P}_{\mathrm{ol}}{ }^{\nabla}$ is a presheaf category.

Opetopes

Idea

Opetopes were originally introduced by Baez and Dolan in [Baez and Dolan, 1998] as an algebraic structure to describe compositions and coherence laws in weak higher dimensional categories.

Idea

Opetopes were originally introduced by Baez and Dolan in [Baez and Dolan, 1998] as an algebraic structure to describe compositions and coherence laws in weak higher dimensional categories.

They have been reworked in [Kock et al., 2010] to arrive at the following moto:
"An n-opetope is a tree whose nodes are $(n-1)$-opetopes, and whose edges are ($n-2$)-opetopes."

Definition (sketch)

Here is how it goes graphically:

Definition (sketch)

Here is how it goes graphically:

- there is a unique 0-opetope, the point, drawn as

Definition (sketch)

Here is how it goes graphically:

- there is a unique 0-opetope, the point, drawn as
- there is a unique 1-opetope, the arrow, drawn as

notice how both ends of the arrow are points (i.e. 0-opetopes);

Definition (sketch)

- a 2-opetope is a shape of the form:

where the top part (source) is any arrangement (or pasting scheme) of 1 -opetopes glued along 0 -opetopes, and where the bottom part (target) consists in only one 1-opetope.

Definition (sketch)

- a 2-opetope is a shape of the form:

where the top part (source) is any arrangement (or pasting scheme) of 1 -opetopes glued along 0 -opetopes, and where the bottom part (target) consists in only one 1-opetope.
Other examples of 2-opetopes include

Definition (sketch)

- a 3-opetope is a shape of the form:

where the left part (source) is any pasting scheme of
2-opetopes glued along 1-opetopes, and where the right part (target) consists in only one 2-opetope parallel to the overall boundary of the source.

Definition (sketch)

- and so on: an n-opetope (for $n \geq 2$) is a source pasting scheme of ($n-1$)-opetopes glued along ($n-2$)-opetopes, together with a target parallel ($n-1$)-opetope.

Definition (sketch)

- and so on: an n-opetope (for $n \geq 2$) is a source pasting scheme of $(n-1)$-opetopes glued along ($n-2$)-opetopes, together with a target parallel ($n-1$)-opetope.
Here is an example of 4-opetope [Cheng and Lauda, 2004]:

The category of opetopes

There is a very graphical idea of "face of an opetope":

The category of opetopes

The category \mathbb{O} of opetopes is defined as follows:

The category of opetopes

The category \mathbb{O} of opetopes is defined as follows:
Objects opetopes;

The category of opetopes

The category \mathbb{O} of opetopes is defined as follows:
Objects opetopes;
Morphisms face embeddings;

The category of opetopes

The category \mathbb{O} of opetopes is defined as follows:
Objects opetopes;
Morphisms face embeddings;
together with 4 relations that implement the geometrical intuition.

The category of opetopes

Relation [Inner]

The purple 1-face embeds as both the target of the blue 2-face, and a source of the red 2-face. Thus both ways of embedding that 1-face into the whole 3-opetope should be the same.

The category of opetopes

The category of opetopes

Relation [Glob1]

The bottom 1-face of the source and the bottom 1-face of the target are geometrically the same, and thus the relevant embeddings should be equal.

The category of opetopes

Relation [Glob1]

The bottom 1-face of the source and the bottom 1-face of the target are geometrically the same, and thus the relevant embeddings should be equal.

Relation [Glob2]

Likewise, a 1-face in the source of the source is the same as some 1-face in the source of the target, and thus the relevant embeddings should be equal.

The category of opetopes

Relation [Degen]

In this 2-opetope, the source doesn't contain any 1 -face, so that the target is "glued on both ends". The source and the target of the target 1-face are geometrically the same, and thus the relevant embeddings should be equal.

Main result

Statement of the main result

Write $\widehat{\mathbb{O}}=\left[\mathbb{O}^{\text {op }}, \mathcal{S e t}\right]$ for the category of $\mathcal{S e t}$-valued presheaves over \mathbb{O}, aka opetopic sets.

Statement of the main result

Write $\widehat{\mathbb{O}}=\left[\mathbb{O}^{\text {op }}, \mathcal{S e t}\right]$ for the category of $\mathcal{S e t}$-valued presheaves over \mathbb{O}, aka opetopic sets.

Theorem [HT, 2018]
There is an equivalence of categories $\mathcal{P o l}^{\nabla} \simeq \hat{\mathbb{O}}$.

Key insight

In an opetopic set Cells are opetopic shapes with labeled faces

Key insight

In an opetopic set Cells are opetopic shapes with labeled faces

In a many-to-one polygraph Generators are many-to-one, i.e. their source are compositions of (many-to-one) generators, while their target consists in a unique generator:

$$
\alpha: \text { hgf } \longrightarrow i .
$$

Goal

An opetopic set should induce a many-to-one polygraph whose generators are cells.

Goal

An opetopic set should induce a many-to-one polygraph whose generators are cells.

A many-to-one polygraph should induce an opetopic set whose cells are generators.

Plan of attack

We construct a Kan "realization-nerve" adjunction, and prove that it is an equivalence:

The opetal functor

The opetal functor

$$
O[-]: \mathbb{O} \longrightarrow \mathcal{P o l}^{\nabla}
$$

is tricky to construct formally

The opetal functor

The opetal functor

$$
O[-]: \mathbb{O} \longrightarrow \mathcal{P o l}^{\nabla}
$$

is tricky to construct formally, but the intuition is simple. Given an opetope ω

create a polygraph $O[\omega]$ whose k-generators are the k-faces of ω :

$$
O[\omega]_{k}=\mathbb{O}_{k} / \omega
$$

The opetal functor

Properties

- By the very nature of opetopes, $O[\omega]$ is many-to-one.

The opetal functor

Properties

- By the very nature of opetopes, $O[\omega]$ is many-to-one.
- If $\omega \in \mathbb{O}_{n}$, then $O[\omega]$ is an n-polygraph that has a unique n-generator.

The opetal functor

Properties

- By the very nature of opetopes, $O[\omega]$ is many-to-one.
- If $\omega \in \mathbb{O}_{n}$, then $O[\omega]$ is an n-polygraph that has a unique n-generator.
- For $y \omega \in \widehat{\mathbb{O}}$ the representable at ω, we have

$$
y \omega_{k}=\bigsqcup_{\psi \in \mathbb{O}_{k}} y \omega_{\psi}=O[\omega]_{k} .
$$

The opetal functor

Properties

- By the very nature of opetopes, $O[\omega]$ is many-to-one.
- If $\omega \in \mathbb{O}_{n}$, then $O[\omega]$ is an n-polygraph that has a unique n-generator.
- For $y \omega \in \widehat{\mathbb{O}}$ the representable at ω, we have

$$
y \omega_{k}=\bigsqcup_{\psi \in \mathbb{O}_{k}} y \omega_{\psi}=O[\omega]_{k} .
$$

- Really, $O[\omega]$ is $y \omega$ with added formal composites of faces of ω.

Polygraphic realization

The left Kan extension of $O[-]$ along y is given by

Polygraphic realization

The left Kan extension of $O[-]$ along y is given by

From an opetopic set X, it creates a many-to-one polygraph $|X|$ whose n-generators are the n-cells of X, i.e.

$$
|X|_{n}=\bigsqcup_{\omega \in \mathbb{O}_{n}} X_{\omega} .
$$

Polygraphic realization

The left Kan extension of $O[-]$ along y is given by

From an opetopic set X, it creates a many-to-one polygraph $|X|$ whose n-generators are the n-cells of X, i.e.

$$
|X|_{n}=\bigsqcup_{\omega \in \mathbb{O}_{n}} X_{\omega} .
$$

Recall our objective:
"An opetopic set should induce a many-to-one polygraph whose generators are cells."

Opetopic nerve

The right adjoint to $|-|$ is given by

$$
\begin{aligned}
N: \mathcal{P o l}^{\nabla} & \longmapsto \hat{\mathbb{O}} \\
P & \longmapsto \mathcal{P o l}^{\nabla}(O[-], P)
\end{aligned}
$$

Opetopic nerve

Example

If $\alpha \in P_{2}, \alpha: h g f \longrightarrow i$

Opetopic nerve

Example

If $\alpha \in P_{2}, \alpha:$ hgf $\longrightarrow i$

then the shape of α is

$$
\alpha^{\natural}=\underset{\downarrow}{\stackrel{i}{\longrightarrow}}
$$

so that there is a cell $\alpha \in N P_{\omega}$, for $\omega=\alpha^{\natural}$ the opetope above. Moto: the shape function $(-)^{\text {घ }}$ "removes labels".

Key result

Theorem ("Yoneda lemma")

For $P \in \mathcal{P o l}{ }^{\nabla}$ and $x \in P_{n}$ a generator, there exist a unique pair $\omega \in \mathbb{O}$ and $f: O[\omega] \longrightarrow P$ such that $f(\omega)=x$. Moreover, $\omega=x^{\natural}$.

Key result

Theorem ("Yoneda lemma")

For $P \in \mathcal{P}_{o l}{ }^{\nabla}$ and $x \in P_{n}$ a generator, there exist a unique pair $\omega \in \mathbb{O}$ and $f: O[\omega] \longrightarrow P$ such that $f(\omega)=x$. Moreover, $\omega=x^{\natural}$.

For $\omega \in \mathbb{O}_{n}$, elements of $N P_{\omega}$ are n-generators of P of shape ω, and

$$
P_{n}=\bigsqcup_{\omega \in \mathbb{O}_{n}} N P_{\omega} .
$$

Key result

Theorem ("Yoneda lemma")

For $P \in \mathcal{P}_{\text {ol }}{ }^{\nabla}$ and $x \in P_{n}$ a generator, there exist a unique pair $\omega \in \mathbb{O}$ and $f: O[\omega] \longrightarrow P$ such that $f(\omega)=x$. Moreover, $\omega=x^{\natural}$.

For $\omega \in \mathbb{O}_{n}$, elements of $N P_{\omega}$ are n-generators of P of shape ω, and

$$
P_{n}=\bigsqcup_{\omega \in \mathbb{O}_{n}} N P_{\omega} .
$$

Recall our objective:
"A many-to-one polygraph should induce an opetopic set whose cells are generators."

Main result

Corollary (Main result)

The counit $\varepsilon:|N P| \longrightarrow P$ is a natural isomorphism. After a little more work, we show that $|-|-1 N$ is an adjoint equivalence of categories.

Main result

Corollary (Main result)
The counit $\varepsilon:|N P| \longrightarrow P$ is a natural isomorphism. After a little more work, we show that $|-| \dashv N$ is an adjoint equivalence of categories.

Corollary (An open question of [Henry, 2017])
For $\boldsymbol{\perp}$ the terminal object of $\mathcal{P o l}^{\nabla}$, the shape function gives a bijection $(-)^{\natural}: \mathbf{1}_{n} \longrightarrow \mathbb{O}_{n}$. Thus opetopes are generators of the terminal many-to-one polygraph.

Conclusion

Conclusion

- We proved that the category of many-to-one polygraphs $\mathcal{P}_{\text {ol }}{ }^{\nabla}$ is a presheaf category, and displayed opetopes (in the sense of [Leinster, 2004] and [Kock et al., 2010]) as the adequate shapes.

Conclusion

- We proved that the category of many-to-one polygraphs $\mathcal{P}_{\text {ol }}{ }^{\nabla}$ is a presheaf category, and displayed opetopes (in the sense of [Leinster, 2004] and [Kock et al., 2010]) as the adequate shapes.
- The main idea was to consider opetopes as describing compositions of lower dimensional opetopes.

Conclusion

- We proved that the category of many-to-one polygraphs $\mathcal{P}_{\text {ol }}{ }^{\nabla}$ is a presheaf category, and displayed opetopes (in the sense of [Leinster, 2004] and [Kock et al., 2010]) as the adequate shapes.
- The main idea was to consider opetopes as describing compositions of lower dimensional opetopes.

- However, the precise formulations and proofs require the theory of polynomial functors and trees
[Gambino and Kock, 2013, Kock, 2011, Kock et al., 2010].

Thank you for your attention!

References i

嗇 Baez, J. C. and Dolan, J. (1998).
Higher-dimensional algebra. III. n-categories and the algebra of opetopes.
Advances in Mathematics, 135(2):145-206.
目 Cheng, E. (2013).
A direct proof that the category of 3-computads is not Cartesian closed.
Cahiers de Topologie et Géométrie Différentielle Catégoriques, 54(1):3-12.

References ii

Eheng, E. and Lauda, A. (2004).
Higher-dimensional categories: an illustrated guide book.

Available at http://cheng.staff.shef.ac.uk/ guidebook/index.html.
國 Gambino, N. and Kock, J. (2013).
Polynomial functors and polynomial monads.
Mathematical Proceedings of the Cambridge Philosophical
Society, 154(1):153-192.
圊 Henry, S. (2017).
Non-unital polygraphs form a presheaf categories. arXiv:1711.00744 [math.CT].

References iii

围 Ho Thanh, C. (2018).
The equivalence between opetopic sets and many-to-one polygraphs.
arXiv:1806.08645 [math.CT].
囯 Kock, J. (2011).
Polynomial functors and trees.
International Mathematics Research Notices, 2011(3):609-673.

Rock, J., Joyal, A., Batanin, M., and Mascari, J.-F. (2010).
Polynomial functors and opetopes.
Advances in Mathematics, 224(6):2690-2737.

图 Leinster, T. (2004).
Higher Operads, Higher Categories. Cambridge University Press.

